高级检索

基于能量平衡短路过渡动态过程的仿真

苏东东, 吕小青, 王莹

苏东东, 吕小青, 王莹. 基于能量平衡短路过渡动态过程的仿真[J]. 焊接学报, 2015, 36(11): 77-80.
引用本文: 苏东东, 吕小青, 王莹. 基于能量平衡短路过渡动态过程的仿真[J]. 焊接学报, 2015, 36(11): 77-80.
SU Dongdong, LV Xiaoqing, WANG Ying. A dynamic simulation model of short circuit transfer based on energy balance[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(11): 77-80.
Citation: SU Dongdong, LV Xiaoqing, WANG Ying. A dynamic simulation model of short circuit transfer based on energy balance[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(11): 77-80.

基于能量平衡短路过渡动态过程的仿真

基金项目: 国家自然科学基金青年科学基金资助项目(51205283)

A dynamic simulation model of short circuit transfer based on energy balance

  • 摘要: 通过焊接电源系统回路模型,考虑了焊丝端部的热焓变化,以及熔滴的能量平衡,提出并建立了较为精确的CO2焊短路过渡动态过程仿真模型. 通过该模型探究了焊接参数匹配和不匹配时,电流信号波形变化趋势以及多个特征参数(均值电流、峰值电流、谷值电流、短路频率、短路时间和燃弧时间)与实际的对比情况,并进行了相关的特征参数误差分析. 结果表明,该模型基本能全面与实际相符合. 从而为短路过渡仿真建模在工程中的进一步应用奠定了理论基础.
    Abstract: By means of welding power system circuit model, thinking of the enthalpy changes on the wire tip, and energy balance on the droplet, the more precise CO2 short circuit transfer dynamic simulation model is put forward. Through this model, it explores changing trend of current waveform, and makes a comparison of characteristic parameters (average current, peak current, valley current, short circuit frequency, short circuit time and arcing time) between the practical measurement and the simulation under matching and mismatching welding parameters. And the related deviations of the characteristic parameters are analyzed. The results indicate that the model is basically consistented with practice. At last, this research will contribute to further development of simulation in short circuit transfer process.
  • [1] 陈茂爱, 蒋元宁, 武传松. 受控短路过渡CO2焊焊接电流波形参数优化[J]. 焊接学报, 2014, 35(7): 79-82. Chen Maoai, Jiang Yuanning, Wu Chuansong. Optimization of welding current waveform parameters in controlled short circuiting transfer GMAW[J]. Transactions of the China Welding Institution, 2014, 35(7): 79-82.
    [2] Xu P, Rados M, Simpson S W. Circuit simulation for gas metal arc welding[J]. Science and Technology of Welding and Joining, 1999, 4(6): 341-346.
    [3] 余文松, 薛家祥, 黄石生, 等. CO2电弧焊动态过程的MATLAB仿真研究[J]. 焊接学报, 1999, 20(3): 153-157. Yu Wensong, Xue Jiaxiang, Huang Shisheng, et al. Simulation study on dynamic process of CO2 arc welding with MATLAB[J]. Transactions of the China Welding Institution, 1999, 20(3): 153-157.
    [4] Choi J H, Lee J Y, Yoo C D. Simulation of dynamic behavior in a GMAW system[J]. Welding Journal, 2001, 80(10): 239s-245s.
    [5] Terasaki H, Simpson S W. Modelling of the GMAW system in free flight and short circuiting transfer[J]. Science and Technology of Welding and Joining, 2005, 10(1): 120-124.
    [6] 何建萍, 华学明, 吴毅雄, 等. GMAW短路过渡动态模型的建立[J]. 焊接学报, 2006, 27(9): 77-80. He Jianping, Hua Xueming, Wu Yixiong, et al. Dynamic model of GMAW system with short circuiting transfer[J]. Transactions of the China Welding Institution, 2006, 27(9): 77-80.
    [7] Mao W, Ushio M. Measurement and theoretical investigation of arc sensor sensitivity in dynamic state during gas metal arc welding[J]. Science and Technology of Welding and Joining, 1997, 2(5): 191-198.
    [8] Rao Z H, Zhou J, Tsai H L. Determination of equilibrium wire-feed-speeds for stable gas metal arc welding[J]. International Journal of Heat and Mass Transfer, 2012, 55(23-24): 6651-6664.
计量
  • 文章访问数:  359
  • HTML全文浏览量:  8
  • PDF下载量:  269
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-08

目录

    /

    返回文章
    返回