高级检索

大厚度电子束焊接接头厚度方向的组织差异性

陈倩倩, 李东, 贺聪聪, 于治水

陈倩倩, 李东, 贺聪聪, 于治水. 大厚度电子束焊接接头厚度方向的组织差异性[J]. 焊接学报, 2015, 36(9): 79-82.
引用本文: 陈倩倩, 李东, 贺聪聪, 于治水. 大厚度电子束焊接接头厚度方向的组织差异性[J]. 焊接学报, 2015, 36(9): 79-82.
CHEN Qianqian, LI Dong, HE Congcong, YU Zhishui. Microstructure difference analysis of large thickness welded joint with EBW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(9): 79-82.
Citation: CHEN Qianqian, LI Dong, HE Congcong, YU Zhishui. Microstructure difference analysis of large thickness welded joint with EBW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(9): 79-82.

大厚度电子束焊接接头厚度方向的组织差异性

基金项目: 上海工程技术大学研究生创新资助项目(E1-0903-14-01133-14KY0520)

Microstructure difference analysis of large thickness welded joint with EBW

  • 摘要: 利用K110型电子束焊机焊接50 mm厚的304不锈钢板,并对焊接接头深度方向的微观组织及硬度进行分析. 结果表明,利用电子束焊接方法能够一次性焊透50 mm厚不锈钢板,得到成形良好的焊接接头. 焊缝深宽比较大,约为18:1. 焊缝组织由奥氏体和铁素体组成. 从焊缝上表面到深约39 mm处,铁素体形态依次为网状,板条状/骨架状和树枝状分布于奥氏体枝晶间或晶界处. 在焊缝的下层,亚稳的胞状奥氏体将取代稳定铁素体相作为初生相直接从熔体中析出. 沿焊缝中心深度方向,接头的凝固模式由primary ferrite with second-phase austenite,FA转变成primary austenite with second-phase ferrite,AF模式,晶粒尺寸减小,硬度呈波动性增加趋势.
    Abstract: 50 mm thick 304 stainless steel plates were welded using K110 electron beam welding (EBW) machine with high voltage vacuum. Microstructure and hardness along the weld center line were tested with optical microscope, scanning electron microscope and microhardness tester. The results show that complete defect free butt joints could be obtained by one pass with electron beam welding. The weld depth-to-width ratio reached as high as 18:1. From the top to the depth of 39 mm, ferrite distributed in austenite grain boundaries or between dendrites with net, lathy/skeletal and equiaxed dendrite morphologies. At the weld bottom, the cellular metastable austenite would precipitate directly as primary phase from the melt, replacing stable ferrite. The weld microstructure consisted of austenite and ferrite. Solidification mode of the weld transformed from FA to AF mode along the weld center line because of the increasing cooling rate. The grain size reduced and the hardness in weld center fluctuated but grew along the weld depth direction.
  • [1] 冯曰海, 金 秋, 王克鸿. 高强合金钢中厚板双丝焊接接头组织性能[J]. 焊接学报, 2009, 30(6): 51-54. Feng Yuehai, Jin Qiu,Wang Kehong. Microstructure and properties of middle thickness sheet welded joint for high strength alloy steel with Tandem GMAW system[J]. Transactions of the China Welding Institution, 2009, 30(6): 51-54.
    [2] Smith D J, Zheng G, Hurrell P R, et al. Measured and predicted residual stresses in thick section electron beam welded steels[J]. International Journal of Pressure Vessels and Piping, 2014, 120/121: 66-79.
    [3] 张秉刚, 王 廷, 陈国庆, 等. 大厚度TC21钛合金电子束焊接试验[J]. 焊接学报, 2009, 30(11): 5-8. Zhang Binggang, Wang Ting, Chen Guoqing, et al. Electron beam welding of TC21 titanium alloy with large thickness[J]. Transactions of the China Welding Institution, 2009, 30(11): 5-8.
    [4] Zhao X H, Liu Y. Research on fatigue behavior of electron beam welding joint of 06Cr19Ni10 austenitic stainless steel sheet[J]. Materials and Design, 2014, 57: 494-502.
    [5] 陈国庆, 张秉刚, 王振兵. 真空电子束焊接35CrMnSi钢[J]. 焊接学报, 2011, 32(9): 33-36. Chen Guoqing, Zhang Binggang, Wang Zhenbing. Vacuum electron beam welding of 35CrMnSi steel[J]. Transactions of the China Welding Institution, 2011, 32(9): 33-36.
    [6] 孙晓娜, 雷 毅, 张 鹰. 厚板奥氏体不锈钢焊缝显微组织分析[J]. 金属热处理, 2006, 31(10): 21-23. Zhang Xiaona, Lei Yi, Zhang Ying. Microstructure analysis of weld joint for austenitic stainless steel thick plate[J]. Heat Treatment of Metals, 2006, 31(10): 21-23.
    [7] John C L, Damian J K. Welding metallurgy and weldability of stainless steels[M]. Chen Jianhong Translate China Machine Pressate, 2008.
    [8] 张国伟, 肖荣诗. 60 mm厚304不锈钢板超窄间隙光纤激光焊接接头组织性能研究[J]. 中国激光, 2014, 41(8): 1-6. Zhang Guowei, Xiao Rongshi. Microstructure and mechanical property of 60mm thick 304 stainless steel joint by ultra-narrow gap fiber laser beam welding[J]. Chinese Journal lasers, 2014, 41(8): 1-6.
    [9] Elmer J W, Allen S M, Eagar T W. Microstructure development during solidification of stainless steels alloys[J]. Metallurgical Transactions, 1989, 20A: 2117-2120.
    [10] Fu J W, Yang Y S, Tong W H, et al. Effect of cooling rate on solidification microstructures in AISI 304 stainless steel[J]. Materials Science and Technology. 2008, 24(8): 941-944.
  • 期刊类型引用(5)

    1. 冯道臣,郑文健,高国奔,周州,贺艳明,杨建国. AlCoCrFeNi_(2.1)高熵合金电子束焊接接头耐蚀性. 机械制造文摘(焊接分册). 2023(04): 8-14 . 百度学术
    2. 冯道臣,郑文健,高国奔,周州,贺艳明,杨建国. AlCoCrFeNi_(2.1)高熵合金电子束焊接接头耐蚀性. 焊接学报. 2022(05): 43-48+116 . 本站查看
    3. 黄菁,孙宇峰,方超,卫靖,刘劲. 聚变堆用奥氏体不锈钢不同激光输出模式熔丝特征. 焊接. 2022(07): 28-33+39 . 百度学术
    4. 夏小维,吴杰峰,刘志宏,沈旭. 真空室窗口领圈316L厚板电子束焊接接头不均匀性. 焊接学报. 2019(09): 53-58+163 . 本站查看
    5. 邓增辉,李东,童邵辉,方虎. 60mm厚Q345钢板电子束焊接接头的显微组织及硬度分布. 机械工程材料. 2017(11): 59-62 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  360
  • HTML全文浏览量:  5
  • PDF下载量:  205
  • 被引次数: 11
出版历程
  • 收稿日期:  2015-04-27

目录

    /

    返回文章
    返回