高级检索

基于多传感器的焊枪定位系统的设计

陈仲盛, 周强, 谢本凯

陈仲盛, 周强, 谢本凯. 基于多传感器的焊枪定位系统的设计[J]. 焊接学报, 2015, 36(8): 105-108.
引用本文: 陈仲盛, 周强, 谢本凯. 基于多传感器的焊枪定位系统的设计[J]. 焊接学报, 2015, 36(8): 105-108.
CHEN Zhongsheng, ZHOU Qiang, XIE Benkai. Design of welding torch's positioning system for welding simulator based on mulitiple sensors[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 105-108.
Citation: CHEN Zhongsheng, ZHOU Qiang, XIE Benkai. Design of welding torch's positioning system for welding simulator based on mulitiple sensors[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 105-108.

基于多传感器的焊枪定位系统的设计

Design of welding torch's positioning system for welding simulator based on mulitiple sensors

  • 摘要: 针对焊接模拟器中焊枪的定位,设计了一种新型的焊枪定位系统.该定位系统在焊件上布置有感应线圈膜,基于电磁感应得以确定焊枪在工作平面上的投影坐标x和y值,应用光纤传感器测量焊枪与焊件的距离,并通过空间几何转换从而间接确定焊枪的z坐标,应用焊枪内置的三轴陀螺仪和三轴加速度传感器模块获得焊枪的姿态,最后根据空间位置关系推导出了熔池的位置和操作者的动作,从而完成了焊枪定位系统的设计.结果表明,该设计能够较好地满足了虚拟焊接模拟器焊枪定位精度和实时性的要求.
    Abstract: Aimed at the positioning of the welding torch in the welding simulator, one new positioning system was designed. In this system, the coil film was put on the welding plate, so that the welding torch's X and Y coordinates projections in the welding plate could be got. The Z coordinate could be captured by optical fiber sensor indirectly, and the posture of welding torch was captured by a 3-axis gyro and a 3-axis accelerometer, and then the weld pool's position and the trainee's action could be gained according to the geometric relationship. The results shows that, this kind of design could meet the requirement of welding simulator's real-time and accuracy.
  • [1] 李喆,詹恒顺,张建勋.焊条电弧焊仿真操作中运条轨迹的检测与评价[J].焊接学报, 2014, 35(9):97-100. Li Zhe, Zhan Hengshun, Zhang Jianxun. The track and evaluation of dynamic welding activity in virtual manual welding process[J]. Transactions of the China Welding Institution, 2014, 35(9):97-100.
    [2] Chambers T L, Aglawe A, Reiners D, et al. Real-time simulation for a virtual reality-based MIG welding training system[J]. Virtual Reality, 2012,16(1):45-55.
    [3] 刘胜长,张翌旸,姜海.手工电弧焊操作模拟训练系统研究[J].科技创新导报, 2009(13):89. Liu Shengchang, Zhang Yiyang, Jiang Hai. Study on the simulation training system of manual arc welding operation[J]. Science and Technology Innovation Herald, 2009(13):89.
    [4] 朱振友,朴泳杰,林涛,等.基于视觉的局部环境焊缝起始位置识别方法[J].焊接学报, 2004, 25(2):95-98. Zhu Zhenyou, Piao Yongjie, Lin Tao, et al. Visual-based research on welding seam initial recognition in local environment[J]. Transactions of the China Welding Institution, 2004, 25(2):95-98.
    [5] 李原,徐德,沈扬,等.一种焊缝结构光图像处理与特征提取方法[J].焊接学报, 2006, 27(9):25-30. Li Yuan, Xu De, Shen Yang, et al. A image processing features extraction method for structured light image of welding seam[J]. Transactions of the China Welding Institution, 2006, 27(9):25-30.
    [6] 姚玉辉,张建勋,薛金保,等. HTS焊接模拟培训系统的现状与发展[J].电焊机, 2011, 41(10):52-55. Yao Yuhui, Zhang Jianxun, Xue Jinbao, et al, Introduction of the virtual welding training system(HTS)[J]. Electric Welding Machine, 2011, 41(10):52-55.
    [7] 张起贵,秦城.电磁感应式电子白板关键技术研究[J].电子器件, 2013, 36(1):54-57. Zhang Qigui, Qin Cheng, Research on key technology of electromagnetic electronic whiteboard[J]. Chinese Journal of Electron Devices, 2013, 36(1):54-57.
计量
  • 文章访问数:  274
  • HTML全文浏览量:  4
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-28

目录

    /

    返回文章
    返回