高级检索

10kW光纤激光焊接缺陷的形成

赵琳, 塚本进, 荒金吾郎, 张岩, 田志凌

赵琳, 塚本进, 荒金吾郎, 张岩, 田志凌. 10kW光纤激光焊接缺陷的形成[J]. 焊接学报, 2015, 36(7): 55-58.
引用本文: 赵琳, 塚本进, 荒金吾郎, 张岩, 田志凌. 10kW光纤激光焊接缺陷的形成[J]. 焊接学报, 2015, 36(7): 55-58.
ZHAO Lin, TSUKAMOTO S, ARAKANE G, ZHANG Yan, TIAN Zhiling. Formation of defects in 10 kW fiber laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(7): 55-58.
Citation: ZHAO Lin, TSUKAMOTO S, ARAKANE G, ZHANG Yan, TIAN Zhiling. Formation of defects in 10 kW fiber laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(7): 55-58.

10kW光纤激光焊接缺陷的形成

基金项目: 国家国际科技合作专项资助项目(2015DFA51460)

Formation of defects in 10 kW fiber laser welding

  • 摘要: 研究了未熔透光纤激光焊接过程中工艺参数对小孔型气孔、热裂纹和飞溅的影响,并讨论焊接缺陷形成机理. 结果表明,随着光纤激光焊接速度的增加,焊缝气孔和热裂纹倾向降低. 当焦点位置在工件表面时,气孔倾向最大;而当焦点位置由入焦向离焦偏移时,热裂纹敏感性增加. 光纤激光焊接气孔是由小孔不稳定引起的,而小孔不稳定性同时引起了熔池后部凝固前沿形状的变化,提高了焊缝热裂纹的敏感性. 较慢速光纤激光焊接飞溅的形成主要在于小孔开口处前沿熔池的凸起,其程度可能与小孔的稳定性有关.
    Abstract: The influences of welding parameters on porosity, hot cracking and spatter were investigated in partial penetration fiber laser welding, and the formation of weld defects was also discussed. The result indicates that porosity and hot cracking are less to form with increasing the welding speed. Porosity is the most significant as the defocus distance is 0, and the susceptivity of hot cracking increases with shifting the focus position from negative to positive defocus. Porosity results from the keyhole instability, whereas the keyhole instability results in the change of the solidification geometry, which increase the susceptivity of hot cracking. Spatter occurs in low speed fiber laser welding owing to the convex part of weld pool just in the front of keyhole, which is probably determined by the keyhole stability.
  • [1] Kawahito Y, Mizutani M, Katayama S. High quality welding of stainless steel with 10 kW high power fibre laser[J]. Science and Technology of Welding and Joining, 2009, 14(4): 288-294.
    [2] Zhao L, Tsukamoto S, Arakane G, et al. Influence of oxygen on weld geometry in fibre laser and fibre laser-GMA hybrid welding[J]. Science and Technology of Welding & Joining, 2011, 16(2): 166-173.
    [3] 蔡 华, 肖荣诗. 薄板铝合金高功率CO2激光与光纤激光焊接飞溅特性对比分析[J]. 焊接学报, 2013, 34(2): 27-30. Cai Hua, Xiao Rongshi. Statistic analysis on spatter characteristics in high power CO2 laser and fiber laser welding of thin sheet aluminum alloy[J]. Transactions of the China Welding Institution, 2013, 34(3): 27-30.
    [4] 裴莹蕾, 单际国, 任家烈. 不锈钢薄板高速激光焊驼峰焊道形成倾向及其影响因素[J]. 金属学报, 2012, 48(12): 1431-1436. Pei Yinglei, Shan Jiguo, Ren Jialie. Study of humping tendency and affecting factors in high speed laser welding of stainless steel sheet[J]. Acta Metallurgica Sinica, 2012, 48(12): 1431-1436.
    [5] 崔 丽, 贺定勇, 李晓延, 等. 焊接方向对光纤激光-MIG复合焊接钛合金焊缝成形的影响[J]. 中国激光, 2011, 38(1): 0103002. Cui Li, He Dingyong, Li Xiaoyan, et al. Effects of welding direction on weld shape of fiber laser-MIG hybrid welded titanium alloys[J]. Chinese Journal of Lasers, 2011, 38(1): 0103002.
    [6] 温 鹏, 荻崎贤二, 山本元道. 奥氏体不锈钢激光焊接过程中残留液体金属的在线观察[J]. 焊接学报, 2012, 33(2): 53-56. Wen Peng, Shinozaki Kenji, Yamamoto Motomichi. In-situ observation of residual liquid metal during laser welding of austenite stainless steels[J]. Transactions of the China Welding Institution, 2012, 33(2): 53-56.
    [7] 高向东, 张 勇, 游德勇, 等. 大功率光纤激光焊熔池形态及焊接稳定性分析[J]. 焊接学报, 2011, 32(9): 13-16. Gao Xiangdong, Zhang Yong, You Deyong, et al. Analysis of molten pool configuration and welding stability during high-power fiber laser welding[J]. Transactions of the China Welding Institution, 2011, 32(9): 13-16.
    [8] Tsukamoto S. High speed imaging technique part 2-High speed imaging of power beam welding phenomena[J]. Science and Technology of Welding and Joining, 2011, 16(1): 44-55.
    [9] Matsunawa A. Problems and solutions in deep penetration laser welding[J]. Science and Technology of Welding and Joining, 2001, 6(6): 351-354.
计量
  • 文章访问数:  307
  • HTML全文浏览量:  3
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-18

目录

    /

    返回文章
    返回