[1] |
闫德俊, 刘雪松, 周广涛, 等. 大型底板结构焊接顺序控制变形数值分析[J]. 焊接学报, 2009, 30(6): 55-58. Yan Dejun, Liu Xuesong, Zhou Gugangtao, et al. Numerical analysis on optimizing welding sequence of large-sized bottom structure for controlling welding distortion[J]. Transactions of the China Welding Institution, 2009, 30(6): 55-58.
|
[2] |
Dong P. Residual stresses and distortions in welded structures: a perspective for engineering applications[J]. Science and Technology of Welding and Joining, 2005, 10(4): 389-398.
|
[3] |
Yi H J, Kim J Y, Yoon J H, et al. Investigations on welding residual stress and distortion in a cylinder assembly by means of a 3D finite element method and experiments[J]. Journal of Mechanical Science and Technology, 2011, 25(12): 3185-3193.
|
[4] |
汪建华, 陆 皓, 魏良武. 固有应变有限元法预测焊接变形理论及其应用[J]. 焊接学报, 2002, 23(6): 36-40.Wang Jianhua, Lu Hao, Wei Liangwu. Prediction of welding distortions based on theory of inherent strain by FEM and its application[J]. Transactions of the China Welding Institution, 2002, 23(6): 36-40.
|
[5] |
方臣富, 吴文烈, 刘 川, 等. 基于固有应变法预测双丝CO2气体保护焊液压支架顶梁变形[J]. 焊接学报, 2013, 34(11): 1-4.Fang Chenfu, Wu Wenlie, Liu Chuan, et al. Welding deformation of top beam structure in hydraulic support by CO2 double-wire gas shield welding based on inherent strain method[J]. Transactions of the China Welding Institution, 2013, 34(11): 1-4.
|
[6] |
Tsirkas S A, Papanikos P, Pericleous K, et al. Evaluation of distortions in laser welded shipbuilding parts using local-global finite element approach[J]. Science and Technology of Welding and Joining, 2003, 8(2): 79-88.
|
[7] |
Bachorski A, Painter M J, Smailes A J, et al. Finite-element prediction of distortion during gas metal arc welding using the shrinkage volume approach[J]. Journal of Materials Processing Technology, 1999, 93(8): 405-409.
|
[8] |
田锡唐. 焊接结构[M]. 北京:机械工业出版社, 1982.
|