钢表面激光熔覆Ti-Al球磨粉合成复合涂层
Ti-Al composite coating prepared by laser cladding on steel surface
-
摘要: 为提高钢的表面硬度及耐腐蚀性,选用钛,铝机械球磨粉末在Q235钢基体表面进行激光熔覆试验,使钛,铝发生反应并制备Ti-Al金属间化合物复合涂层. 综合运用DTA、XRD和SEM分析方法对激光熔覆涂层的成分与组织进行分析,并对复合涂层的硬度及耐腐蚀性进行测试. 结果表明,机械球磨可使粉体细化,涂层与基体形成了冶金结合,涂层由Al3Ti,Al3Fe,Fe,AlN和FeO组成,同时激光熔覆涂层具有较高的硬度及优良的耐腐蚀性能. 当激光功率为1000 W,扫描速度为600 mm/min时,复合涂层同时获得最高显微硬度和耐腐蚀阻抗值,分别为949.5 HV和600 kΩ.
-
关键词:
- 机械球磨 /
- 激光熔覆 /
- Ti-Al金属间化合物 /
- 显微硬度 /
- 耐腐蚀性
Abstract: In order to improve the microhardness and corrosion resistance of Q235 steel, Ti-Al intermetallic compound composite coating were prepared on Q235 steel surface by using laser cladding with the addition of mechanical milled Ti, Al powder. The microstructure of Ti-Al composite coating was analyzed using DTA, XRD and SEM, while the microhardness and corrosion resistance of the cladding layers were measured. The results showed that Ti-Al mixed powders can be refined by milling. Metallurgical bonding was formed between the base metal and the cladded coating which were composed of Al3Fe, Al3Ti, Fe, AlN and FeO. The microhardness of the cladded layer was high and corrosion resistance was excellent. When the laser power was 1 000 W and scanning speed was 600 mm/min, the highest microhardness of the coating reached at 949.5 HV, and the corrosion resistance impedance could be 600 kΩ,. -
-
[1] Dimiduk D M. Gamma titanium aluminide alloys-an assessment within the competition of aerospace structural materials[J]. Materials Science and Engineering A, 1999, 263(2): 281-288. [2] Yang R, Cui Y Y, Dong L M, et al. Alloy development and shell mould casting of gamma TiAl[J]. Journal of Materials Processing Technology, 2003, 135(2): 179-188. [3] Sopunna K, Thongtem T, McNallan M, et al. Surface modification of the γ-TiAl alloys by the nitridation[J]. Surface Science, 2004, 566/568: 810-815. [4] Gao Y L, Wang C S, Lin Q, et al. Broad-beam laser cladding of Al-Si alloy coating on AZ91HP magnesium alloy[J]. Surface and Coatings Technology, 2006, 201(6): 2701-2706. [5] Ocelik V, Matthews D, De Hosson J Th M. Sliding wear resistance of metal matrix composite layers prepared by high power laser[J]. Surface and Coatings Technology, 2005, 197(2/3): 303-315. [6] Jagdheesh R, kamachi M U, Sastikumar D, et al. Laser cladding of Si on austenitic stainless steel[J]. Surface Engineering, 2005, 21(2): 113-118. [7] Akhtar F, Hasan F. Reactive sintering and properties of TiB2 and TiC porous cermets[J]. Materials Letters, 2008, 62(8/9): 1242-1245. [8] Gedevanishvili S, DeeVi S C. Processing of iron aluminides by pressureless sintering through Fe+Al elemental route[J]. Materials Science and Engineering A, 2002, 325(1/2): 163-176. [9] 赵 刚. 机械球磨Ti/Al复合粉反应烧结及挤压工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2006. [10] Marco J F, Agudelo A C, Gancedo J R, et al. Corrosion resistance of single TiN layers, Ti/TiN bilayers and Ti/TiN/Ti/TiN multilayers on iron under a salt fog spray(phohesion) test: an evaluation by XPS[J]. Surface and Interface Analysis, 1999, 27(2): 71-75. [11] Chen B F, Pan W L, Yu G P, et al. On the corrosion behavior of TiN-coated AISI D2 steel[J]. Surface and Coatings Technology, 1999, 111(1): 16-22. -
期刊类型引用(8)
1. 谭钦文,邓黎鹏,易润华,程东海,李东阳. Ni中间层镁/钛异种材料电阻点焊接头组织与性能. 材料导报. 2023(07): 192-195 . 百度学术
2. 何子涛,黄本生,黄思语,刘罗林. 焊接温度对AZ91/TC4扩散焊接接头组织和性能的影响. 材料热处理学报. 2023(06): 191-198 . 百度学术
3. 陈国财,胡德安,程东海,刘亚明. 添加Ni中间层的镁/钛激光熔钎焊工艺及接头性能研究. 南昌航空大学学报(自然科学版). 2021(01): 63-67+108 . 百度学术
4. 许欣,靳广胜,刘颖. 激光功率对镁合金与镀锌钢激光熔钎焊组织和力学性能影响. 热加工工艺. 2019(03): 76-79 . 百度学术
5. 孙逸铭,张凯平,檀财旺,赵洪运. 镀Cu层调控AZ31B/TC4激光熔钎焊接特性. 焊接学报. 2019(02): 47-51+163 . 本站查看
6. 江莉,方林宏,蒋蓓. 纯钛/镁合金异种材料电阻点焊接头组织和性能分析. 焊接. 2018(07): 39-42+67 . 百度学术
7. 张泽群,张凯平,檀财旺,周利,周珍珍. 镁/钛异种合金焊接的研究现状与展望. 焊接. 2017(11): 21-27+70 . 百度学术
8. 孟圣昊,檀财旺,陈波,邓枫昱,刘多,冯吉才. 镁/铜异种金属激光填丝熔钎焊接特性分析. 焊接学报. 2017(08): 41-44+67+130-131 . 本站查看
其他类型引用(2)
计量
- 文章访问数: 355
- HTML全文浏览量: 16
- PDF下载量: 88
- 被引次数: 10