高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SAC305/Cu微焊点界面金属间化合物生长速率

王建华 孟工戈 孙凤莲

王建华, 孟工戈, 孙凤莲. SAC305/Cu微焊点界面金属间化合物生长速率[J]. 焊接学报, 2015, 36(5): 47-50,76.
引用本文: 王建华, 孟工戈, 孙凤莲. SAC305/Cu微焊点界面金属间化合物生长速率[J]. 焊接学报, 2015, 36(5): 47-50,76.
WANG Jianhua, MENG Gongge, SUN Fenglian. Study on growth rate of interfacial metallic compound in SAC305/Cu joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(5): 47-50,76.
Citation: WANG Jianhua, MENG Gongge, SUN Fenglian. Study on growth rate of interfacial metallic compound in SAC305/Cu joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(5): 47-50,76.

SAC305/Cu微焊点界面金属间化合物生长速率

基金项目: 国家自然科学基金资助项目(51075107)

Study on growth rate of interfacial metallic compound in SAC305/Cu joints

  • 摘要: 界面金属间化合物(IMC)的生长速率是影响钎焊接头可靠性的重要因素. 文中研究了焊点尺寸、时效温度及镍镀层对SAC305/Cu微焊点界面IMC生长速率的影响. 结果表明,焊球尺寸为200,300,400和500 μm,时效温度为100,130,160 ℃条件下,界面IMC层厚度生长速率随时效时间平方根数值的升高而增长. 焊点尺寸由小变大,界面IMC层厚度更薄,IMC的生长速率也更小. 随着时效温度的升高,界面IMC生长速率增大. 镍镀层对界面IMC的生长速率有明显的抑制作用,即降低IMC生长速率,使其增厚变缓.
  • [1] Jiun H H, Leng E P, Ding M, et al. A study on lead free SnAgCu solder system[C]// International Electronic Manufacturing Technology, Petaling Jaya Malaysia, Institute of Electrical and Electronics Engineers Inc. 2006: 450-455.
    [2] 张新平, 尹立孟, 于传宝. 电子和光子封装无铅钎料的研究和应用进展[J]. 材料研究学报, 2008, 22: 1-9. Zhang Xinping, Yin Limeng, Yu Chuanbao. Research and application of electronic and photonic packaging lead-free solder[J]. Journal of Materials Research, 2008, 22: 1-9.
    [3] 于大全, 段莉蕾. Sn-3.5Ag/Cu界面金属间化合物的生长行为研究[J]. 材料科学与工艺, 2005,13(5): 532-536. Yu Daquan, Duan Lilei. The growth behaviors of intermetallic compounds between Sn-3.5Ag and Cu substrate[J]. Material Science and Technology, 2005, 13(5): 532-536.
    [4] Wu A T, Chen M H, Huang C H. Formation of intermetallic compounds in SnAgBiIn solder systems on Cu substrates[J]. Journal of Alloys and Compounds, 2009, 476(1/2): 252-256.
    [5] 肖 慧, 李晓延, 李凤辉. 热循环条件下SnAgCu/Cu焊点金属间化合物生长及焊点失效行为[J]. 材料工程, 2010, 10: 38-42. Xiao Hui, Li Xiaoyan, Li Fenghui. Growth kinetic of intermetallic compounds and failurebehavior for SnAgCu/Cu solder joints subjected to thermal cycling[J]. Materials Engineering, 2010,10: 38-42.
    [6] Deng X, Piotrowski G, Williams J J. Influence of initial morphology and thickness of Cu6Sn5 and Cu3Sn intermetallics on growth and evolution during thermal aging of Sn-Ag solder/Cu joints[J]. Journal of electronic Materials, 2003, 32: 1403-1413.
    [7] Kanlayasiri K, Ariga T. Influence of thermal aging on microhardness and microstructure influence of Sn0.3Ag0.7CuxIn lead-free solders[J]. Journal of Alloys and Compounds, 2010, 504: L5-L9.
    [8] 孙凤莲, 朱 艳. 微焊点的几何尺寸效应[J]. 哈尔滨理工大学学报, 2012, 17(2): 100-104. Sun Fenglian, Zhu Yan. Geometrical size effects on the performance of micro-joint[J]. Journal of Harbin University of Science and Technology, 2012, 17(2): 100-104.
    [9] 李望云, 尹立孟, 位 松, 等. 无铅电子封装互连焊点中的尺寸效应研究[J]. 重庆科技学院学报, 2011, 13(6): 130-133. Li Wangyun, Yin Limeng, Wei Song, et al. Theeffect of size in electronic packaging interconnect of lead-free solder joints[J]. Journal of Chongqin Institute of Technology, 2011,13(6): 130-133.
    [10] 王 磊, 卫国强, 薛明阳, 等. 等温时效对SnAgCu焊点界面组织及剪切强度的影响[J].特种铸造及有色合金, 2012, 32(7): 677-680. Wang Lei, Wei Guoqiang, Xue Mingyang, et al. The effect of isothermal aging on the interfacial microstructure and shear strength of SnAgCu solder[J]. Special Casting & Nonferrous Alloys, 2012, 32(7): 677-680.
    [11] Liu P, Yao P, Liu J. Evolutions of the interface and shear strength between SnAgCu-xNi solder and Cu substrate during isothermal aging at 150 ℃[J]. Journal of Alloys and Compounds, 2009, 486(1/2): 474-479.
    [12] Islam M N, Sharif A, Chan Y C. Effect of volume in interfacial reaction between eutectic Sn-3.5%Ag-0.5%Cu solder and Cu metallization in microelectronic packaging[J]. Journal of Electronic Materials, 2005, 34(2): 143-149.
    [13] 王丽凤, 孙凤莲, 吕 烨, 等. Sn-3.0Ag-0.5Cu-xNi无铅焊料及焊点的性能[J]. 焊接学报, 2009, 30(1): 9-12. Wang Lifeng, Sun Fenglian, Lü Ye, et al. The performance of Sn-3.0Ag-0.5Cu-xNi lead-free solder joints[J]. Transactions of China Welding Institution, 2009, 30(1): 9-12.
    [14] Zou Pengfei, Sun Fenglian, Liu Yang. Effect of Ni on the morphology of IMC and mechanical properties of SAC-Bi-Ni/Cu joints[C]// International Symposium on Advanced Packaging Materials, 2011: 267-271.
    [15] Liu Y, Sun F L. The effect of Ni and Bi elements to the growth rate of SnAgCu solder interfacial compounds[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(2): 460-464.
    [16] 李勋平, 周敏波, 夏建民, 等. 界面耦合作用对Cu(Ni)/Sn-Ag-Cu/Cu(Ni)BGA焊点界面IMC形成与演化的影响[J]. 金属学报, 2011, 47(5): 611-619. Li Xunping, Zhou Minbo, Xia Jianmin, et al. Effect of interface coupling to the IMC formation and evolution of Cu (Ni)/Sn-Ag-Cu/Cu (Ni) BGA solder joint[J]. Metal Journal, 2011, 47(5): 611-619.
    [17] 王要利, 张柯柯, 韩丽娟, 等. Sn2.5Ag0.7Cu(0.1RE)/Cu焊点界面区微观组织与Cu6Sn5的生长动力学[J]. 中国有色金属学报, 2009, 19(4): 708-713. Wang Yaoli, Zhang Keke, Han Lijuan, et al. Microstructure of Sn2.5Ag0.7Cu (0.1RE)/Cu weld interface area and the growth kinetics of Cu6Sn5[J]. Chinese Journal of Nonferrous Metals, 2009, 19(4): 708-713.
  • 加载中
计量
  • 文章访问数:  317
  • HTML全文浏览量:  21
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-18

SAC305/Cu微焊点界面金属间化合物生长速率

    基金项目:  国家自然科学基金资助项目(51075107)

摘要: 界面金属间化合物(IMC)的生长速率是影响钎焊接头可靠性的重要因素. 文中研究了焊点尺寸、时效温度及镍镀层对SAC305/Cu微焊点界面IMC生长速率的影响. 结果表明,焊球尺寸为200,300,400和500 μm,时效温度为100,130,160 ℃条件下,界面IMC层厚度生长速率随时效时间平方根数值的升高而增长. 焊点尺寸由小变大,界面IMC层厚度更薄,IMC的生长速率也更小. 随着时效温度的升高,界面IMC生长速率增大. 镍镀层对界面IMC的生长速率有明显的抑制作用,即降低IMC生长速率,使其增厚变缓.

English Abstract

王建华, 孟工戈, 孙凤莲. SAC305/Cu微焊点界面金属间化合物生长速率[J]. 焊接学报, 2015, 36(5): 47-50,76.
引用本文: 王建华, 孟工戈, 孙凤莲. SAC305/Cu微焊点界面金属间化合物生长速率[J]. 焊接学报, 2015, 36(5): 47-50,76.
WANG Jianhua, MENG Gongge, SUN Fenglian. Study on growth rate of interfacial metallic compound in SAC305/Cu joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(5): 47-50,76.
Citation: WANG Jianhua, MENG Gongge, SUN Fenglian. Study on growth rate of interfacial metallic compound in SAC305/Cu joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(5): 47-50,76.
参考文献 (17)

目录

    /

    返回文章
    返回