高级检索

不同CMT工艺2014-T6焊缝成形及气孔分析

从保强, 欧阳瑞洁, 乔柳平

从保强, 欧阳瑞洁, 乔柳平. 不同CMT工艺2014-T6焊缝成形及气孔分析[J]. 焊接学报, 2015, 36(5): 37-40.
引用本文: 从保强, 欧阳瑞洁, 乔柳平. 不同CMT工艺2014-T6焊缝成形及气孔分析[J]. 焊接学报, 2015, 36(5): 37-40.
CONG Baoqiang, OUYANG Ruijie, QIAO Liuping. Weld formation and porosity of 2014-T6 aluminum alloy welds produced by cold metal transfer process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(5): 37-40.
Citation: CONG Baoqiang, OUYANG Ruijie, QIAO Liuping. Weld formation and porosity of 2014-T6 aluminum alloy welds produced by cold metal transfer process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(5): 37-40.

不同CMT工艺2014-T6焊缝成形及气孔分析

基金项目: 中央高校基本科研业务费专项资金资助项目

Weld formation and porosity of 2014-T6 aluminum alloy welds produced by cold metal transfer process

  • 摘要: 分别采用3种不同的冷金属过渡(CMT)焊接工艺进行2014-T6铝合金平板堆焊成形,研究不同CMT工艺对铝合金焊缝成形特征及气孔的影响. 结果表明,保持送丝速度7.5 m/min、电弧长度和保护气体纯Ar流量25L/min不变,2014-T6铝合金常规CMT焊缝具有明显的指状熔深特征,焊缝气孔缺陷严重且呈全焊缝分布特征;脉冲CMT(CMT-P)焊缝的指状熔深特征减缓,气孔显著减少,焊接速度0.6 m/min时焊缝基本无气孔;变极性复合脉冲CMT(CMT-PADV)焊缝熔深仅约0.4 mm,成形呈显著球形特征,气孔明显减少,焊接速度0.4 m/min时基本无气孔.
    Abstract: The weld formation and porosity characteristics of 2014-T6 aluminum alloy using three different cold metal transfer welding processes were investigated. Experimental results show that, with constant wire feed speed of 7.5 m/min, contact tip to work distance of 15 mm and pure argon shielding gas flow rate of 25 L/min, finger-shape penetration is observed using the conventional CMT process and there are many gas pores in the lower and upper part of the weld. The volume of the finger-shape weld metal is decreased and the gas pore is reduced significantly using the pulsed CMT process. The porosity is almost eliminated using the welding speed of 0.6 m/min. Spherical-shape weld is achieved using the CMT welding process. The gas pore is also significantly reduced and drop to zero with the welding speed of 0.4 m/min.
  • [1] Pickin C G, Young K. Evaluation of cold metal transfer (CMT) process for welding aluminium alloy[J]. Science and Technology of Welding and Joining, 2006, 11(5): 583-585.
    [2] Feng Jicai, Zhang Hongtao, He Peng. The CMT short-circuiting metal transfer process and its use in thin aluminium sheets welding[J]. Materials and Design, 2009, 30(5): 1850-1852.
    [3] Zhang Hongtao, Feng Jicai, He Peng, et al. The arc characteristics and metal transfer behaviour of cold metal transfer and its use in joining aluminium to zinc-coated steel[J]. Materials Science and Engineering A, 2009, 499: 111-113.
    [4] Shang Jing, Wang Kehong, Zhou Qi, et al. Microstructure characteristics and mechanical properties of cold metal transfer welding Mg/Al dissimilar metals[J]. Materials and Design, 2012, 34: 559-565.
    [5] Cao R, Wen B F, Chen J H, et al. Cold metal transfer joining of magnesium AZ31B-to-aluminum A6061-T6[J]. Materials Science and Engineering A, 2013, 560: 256-266.
    [6] Pépe N, Egerland S, Colegrove P A, et al. Measuring the process efficiency of controlled gas metal arc welding processes[J]. Science and Technology of Welding and Joining, 2011, 16(5): 412-417.
    [7] Dupont J N, Marder A R. Thermal efficiency of arc welding processes[J]. Welding Journal, 1995, 74(12): 406s-416s.
    [8] Kou S, Wang Y H. Weld pool convection and its effect[J]. Welding Journal, 1986, 65(3): 63s-70s.
    [9] Lin M L, Eagar T W. Influence of arc pressure on weld pool geometry[J]. Welding Journal, 1985, 64(6): 162s-169s.
计量
  • 文章访问数:  343
  • HTML全文浏览量:  12
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-17

目录

    /

    返回文章
    返回