[1] |
American Welding Society. Laboratory methods for measuring fume generation rates and total fume emissions of welding and allied processes (F1.2-79)[S]. Miami, FL:American Welding Society, 1979.
|
[2] |
Myers J M, Antholine W E, Myers C R. Hexavalent chromium causes the oxidation of thioredoxin in human bronchial epithelial cells[J]. Toxicology, 2008, 246(2):222-233.
|
[3] |
Occupational Safety, Health Act (OSHA). Occupational exposure to hexavalent chromium[S]. Washington:OSHA, 2006.
|
[4] |
Meeker J D, Susi P, Flynn M R. Hexavalent chromium exposure and control in welding tasks[J]. Journal of Occupational and Environmental Hygiene, 2010, 7(11):607-615.
|
[5] |
Emmanuel B, Champagne. Coatedelectrode with low fume emission and low hexavalent chromium for welding stainless steels:USA, 20050189337[P]. 2005-09-1.
|
[6] |
张清辉,吴宪平,洪波.焊接材料研制理论与技术[M].北京:冶金工业出版社, 2002.
|
[7] |
Bosworth M R, Deam R T. Influence of GMAW droplet size on fume formation rate[J]. Journal of Physics D:Applied Physics, 2000, 33(20):2605.
|
[8] |
程俊峰,徐明厚,曾汉才.高温下Cr的氧化动力学研究[J].中国电机工程学报, 2002, 22(8):135-138. Cheng Junfeng, Xu Minghou, Zeng Hancai, et al. A study of oxidation dynamics of chromium at high temperature[J]. Proceeding of the CSEE, 2002, 22(8):135-138.
|
[9] |
Schnick M, Füssel U, Hertel M, et al. Metal vapor causes a central minimum in arc temperature in gas-metal arc welding through increased radiative emission[J]. Journal of Physics D:Applied Physics, 2010, 43(2):001-005.
|