高级检索

Fe-Cr-Ti-C系药芯焊丝熔覆层中硬质相生长模式

孟凡玲, 张桂清, 苏允海

孟凡玲, 张桂清, 苏允海. Fe-Cr-Ti-C系药芯焊丝熔覆层中硬质相生长模式[J]. 焊接学报, 2015, 36(3): 93-96.
引用本文: 孟凡玲, 张桂清, 苏允海. Fe-Cr-Ti-C系药芯焊丝熔覆层中硬质相生长模式[J]. 焊接学报, 2015, 36(3): 93-96.
MENG Fanling, ZHANG Guiqing, SU Yunhai. Growth model of hard phase in layer surfaced with Fe-Cr-Ti-C flux cored wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(3): 93-96.
Citation: MENG Fanling, ZHANG Guiqing, SU Yunhai. Growth model of hard phase in layer surfaced with Fe-Cr-Ti-C flux cored wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(3): 93-96.

Fe-Cr-Ti-C系药芯焊丝熔覆层中硬质相生长模式

基金项目: 辽宁省教育厅重点实验室资助项目(2008S164);沈阳市科技攻关资助项目(20082647-2)

Growth model of hard phase in layer surfaced with Fe-Cr-Ti-C flux cored wire

  • 摘要: 将Fe-Cr-Ti-C系耐磨药芯焊丝采用钨极氩弧焊堆焊到低碳钢表面,分析熔覆层中的物相组成,研究熔覆层中硬质相的形态分布和生长机理,探究熔覆层的耐磨性及表面硬度等力学性能变化的原因. 结果表明,药芯堆焊焊丝中的合金元素的过渡系数很高,可原位合成(Fe,Cr)7C3和TiC硬质相,TiC优先依附外来界面行核、长大,共晶(Fe,Cr)7C3硬质相则依附于初生马氏体相和TiC形核生长,点状TiC硬质相(少数为条状和十字状)弥散分布于马氏体、残余奥氏体的基体中,与网状的(Fe,Cr)7C3耐磨框架组成复合硬质相,提高熔覆层的耐磨性.
    Abstract: The Fe-Cr-Ti-C series of wear-resistant flux cored wire was surfaced on low carbon steel by GTAW method. The phase composition, distribution and growth mechanism of hard phase in surfacing layer were studied. The reasons for the increasing of abrasion resistance and surface hardness were discussed as well. The results show that the alloy elements of flux cored wire could effectively translate into surfacing layer, in-situ synthesis of (Fe,Cr)7C3 and TiC hard phase were obtained. TiC preferentially nucleated and grew up by attaching to external interface, the nucleation and growth of eutectic (Fe,Cr)7C3 hard phase was dependent on the primary martensite phase and TiC. Most of TiC hard phase was punctate, the minority was the strip and cross shaped. They dispersed in the matrix of martensite, and formed composite hard phase with (Fe,Cr)7C3, which could significantly improve the wear resistance of the surfacing layer.
  • [1] 刘政军, 李乐成, 宗 琳, 等. 原位合成 TiC-M7C3陶瓷硬质相显微组织的分析[J]. 焊接学报, 2012, 33(3): 65-68. Liu Zhengjun, Li Lecheng, Zong Lin, et al. Analysis on microstructure of in-situ synthesis TiC-M7C3 ceramic hard phase[J]. Transactions of the China Welding Institution, 2012, 33(3): 65-68.
    [2] 李 勇, 贺定勇, 索红莉, 等. 等离子弧堆焊TiC增强NiTi合金的组织和耐磨性[J]. 材料热处理学报, 2013, 34(3): 136-139. Li Yong, He Dingyong, Suo Hongli, et al. Microstructure and wear resistance of plasma arc surfacing TiC/NiTi alloys[J]. Transactions of Materials and Heat Treatment, 2013, 34(3): 136-139.
    [3] 吕维洁, 杨志峰. 原位合成(TiB+Al2O3)/Ti复合材料[J]. 铸造, 2002, 51(5): 277-279. Lü Weijie, Yang Zhifeng. In situ fabrication of (TIb+Al2O3)/Ti matrix composites[J]. Foundry, 2002, 51(5): 277-279.
    [4] 蒋 昊, 栗卓新, 蒋建敏, 等. 高硬度高耐磨自保护金属芯堆焊焊丝[J]. 焊接学报, 2006, 27(1): 69-73. Jiang Hao, Li Zhuoxin, Jiang Jianmin, et al. Experim ental study on operative performance of high cellulose covered electrode for pipe welding[J]. Transactions of the China Welding Institution, 2006, 27(1): 69-73.
    [5] 王智慧, 王清宝. Fe-Cr-C耐磨堆焊合金中初生碳化物生长方向的控制[J]. 焊接学报, 2004, 25(1): 103-107. Wang Zhihui, Wang Qingbao. Orientation control of primary carbidein Fe-Cr-C hardfacing alloys[J]. Transactions of the China Welding Institution, 2004, 25(1): 103-107.
    [6] 王新洪, 宋思利. TiC-VC免预热耐磨堆焊焊条[J]. 焊接学报, 2002, 23(4): 31-34. Wang Xinhong, Song Sili. Development of TiC-VC hardfacing electrode with non-preheating and wear resistance properties[J]. Transactions of the China Welding Institution, 2002, 23(4): 31-34.
    [7] 王清宝, 王智慧, 李世敏. Fe-Cr-C系高碳耐磨堆焊合金组织及性能[J]. 焊接学报, 2005, 26(6): 119-123. Wang Qingbao, Wang Zhihui, Li Shimin.Microstructures and properties of Fe-Cr-C hardfacing alloys with high carbon content[J]. Transactions of the China Welding Institution, 2005, 26(6): 119-123.
计量
  • 文章访问数:  218
  • HTML全文浏览量:  5
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-01

目录

    /

    返回文章
    返回