高级检索

激光焊接不锈钢微间隙焊缝偏差小波变换检测法

高向东, 刘永华

高向东, 刘永华. 激光焊接不锈钢微间隙焊缝偏差小波变换检测法[J]. 焊接学报, 2015, 36(3): 1-4.
引用本文: 高向东, 刘永华. 激光焊接不锈钢微间隙焊缝偏差小波变换检测法[J]. 焊接学报, 2015, 36(3): 1-4.
GAO Xiangdong, LIU Yonghua. Detection of micro-gap seam offset based on wavelet transformation during high-power fiber laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(3): 1-4.
Citation: GAO Xiangdong, LIU Yonghua. Detection of micro-gap seam offset based on wavelet transformation during high-power fiber laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(3): 1-4.

激光焊接不锈钢微间隙焊缝偏差小波变换检测法

基金项目: 国家自然科学基金资助项目(51175095);广东省自然科学基金资助项目(10251009001000001);广东省学科建设科技创新资助项目(2013KJCX0063)

Detection of micro-gap seam offset based on wavelet transformation during high-power fiber laser welding

  • 摘要: 针对大功率(激光功率10 kW)光纤激光焊接304不锈钢间隙小于0.1 mm的紧密对接焊缝,研究一种基于小波变换的焊缝偏差检测方法. 为了分析焊缝偏差特征细节,采用红外传感高速摄像机摄取焊接区域熔池红外热像,利用小波函数对熔池图像感兴趣区域进行多尺度分解. 定义小波变换后的高频分量极值的横坐标作为匙孔形变参数,以匙孔形变参数作为特征值,分析特征值和焊缝偏差之间的关系. 结果表明,匙孔形变参数与焊缝偏差之间存在密切关联,能有效判断和检测焊缝偏差.
    Abstract: An approach of detecting the offset between the micro-gap seam and the laser beam focus based on wavelet transform was presented during fiber laser butt-joint welding of Type 304 austenitic stainless steel plate with a high power 10 kW continuous wave fiber laser. This offset is less than 0.1 mm. To study the details of seam offset characteristics, an infrared sensitive high-speed video camera was used to capture the dynamic images of the molten pools. Multi-scale decomposition was implemented to the interested area of a molten pool image by using the wavelet function. The collected horizontal coordinate of high frequency coefficient was defined as a keyhole deformation parameter, and then this keyhole deformation parameter was deemed as a keyhole eigenvalue. Through the analysis of the relationship between the eigenvalue and welding seam offset, it was found that the offset between the micro-gap seam and the laser beam focus could be estimated by the keyhole deformation parameter effectively.
  • [1] Gao X D, You D Y, Katayama S J. Infrared image recognition for seam tracking monitoring during fiber laser welding[J]. Mechatronics, 2012, 22: 370-380.
    [2] 高向东, 游德勇, Katayama Seiji. 大功率光纤激光焊焊缝跟踪偏差测量新方法[J]. 焊接学报, 2010, 31(5): 49-52. Gao Xiangdong, You Deyong, Katayama Seiji. A new approach to measure deviation of seam tracking in high-power fiber laser welding[J]. Transactions of the China Welding Institution, 2010, 31(5): 49-52.
    [3] Fang Z J, Xu D, Tan M. A vision-based self-tuning fuzzy controller for fillet weld seam tracking[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(3): 540-550.
    [4] Liu X W, Wang G R, Shi Y H. Image processing of welding seam based on single-stripe laser vision system[J]. Intelligent Systems Design and Applications, 2012(2): 463-470.
    [5] 薛家祥, 刘 晓, 张丽玲, 等. 基于小波变换的MAG焊焊缝跟踪[J]. 焊接学报, 2006, 27(6): 13-16. Xue Jiaxiang, Liu Xiao, Zhang Liling, et al. Seam tracking in metal active-gas welding based on wavelet transform[J]. Transactions of the China Welding Institution, 2006, 27(6): 13-16.
    [6] Mattei S, Grevey D, Mathieu A, et al. Using infrared thermography in order to compare laser and hybrid (laser+MIG) welding processes[J]. Optcs & Laser Technolgy, 2009, 41: 665-670.
    [7] Chen Z Q, Gao X D. Detection of weld pool width using infrared imaging during high-power fiber laser welding of type 304 austenitic stainless steel[J]. The International Journal of Advanced Manufacturing Technology, 2014, 74: 1247-1254.
计量
  • 文章访问数:  270
  • HTML全文浏览量:  1
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-11

目录

    /

    返回文章
    返回