高级检索

7075铝合金搅拌摩擦焊接头温度场及残余应力场的有限元模拟

郭柱, 朱浩, 崔少朋, 王彦红

郭柱, 朱浩, 崔少朋, 王彦红. 7075铝合金搅拌摩擦焊接头温度场及残余应力场的有限元模拟[J]. 焊接学报, 2015, 36(2): 92-96.
引用本文: 郭柱, 朱浩, 崔少朋, 王彦红. 7075铝合金搅拌摩擦焊接头温度场及残余应力场的有限元模拟[J]. 焊接学报, 2015, 36(2): 92-96.
GUO Zhu, ZHU Hao, CUI Shaopeng, WANG Yanhong. Finite element simulation of friction stir welding temperature field and residual stress field of 7075 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(2): 92-96.
Citation: GUO Zhu, ZHU Hao, CUI Shaopeng, WANG Yanhong. Finite element simulation of friction stir welding temperature field and residual stress field of 7075 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(2): 92-96.

7075铝合金搅拌摩擦焊接头温度场及残余应力场的有限元模拟

基金项目: 河北省自然科学基金资助项目(2012210001);河北省高等学校科学技术研究重点资助项目(ZD2010209);教育部科学技术研究重点资助项目(211022)

Finite element simulation of friction stir welding temperature field and residual stress field of 7075 aluminum alloy

  • 摘要: 根据搅拌摩擦焊特点及库伦摩擦做功理论,以厚度为6 mm的7075-T7351铝合金板材为研究对象,基于ANSYS有限元软件,建立了搅拌摩擦焊双热源三维有限元模型,研究不同转速、焊接速度对温度场及残余应力场的影响规律.结果表明,焊接过程峰值温度在500℃左右,接头最高温度出现在搅拌头后部大约5 mm处;接头残余应力以纵向残余应力为主,在垂直焊缝方向上呈M形分布,最大值约为150 MPa;当搅拌头转速一定时,随着焊接速度的增大,峰值温度减小,峰值纵向残余应力增大;当焊接速度一定时,温度随着转速的增大而增大,且转速越大,纵向残余应力分布越均匀.
    Abstract: Based on the characteristics of the friction stir welding and Coulomb friction work theory, 7075-T7315 aluminum alloy flats with thickness of 6 mm were chosen as the study objects. Based on ANSYS code, a three dimensional numerical model with two heat flux inputs of friction stir welding were established. Moreover, the effect of welding speed and rotation speed on temperature and residual stress distributions were investigated.
  • [1] 栾国红,关桥.高效、固相焊接新技术-搅拌摩擦焊[J].电焊机, 2005, 35(9):8-13. Luan Guohong, Guan Qiao. High-effective,solid-phase new welding technology-FSW[J]. Electric Welding Machine, 2005, 35(9):8-13.
    [2] Song M, Kovacevic R. Thermal modeling of friction stir welding in a moving coordinate system and its validation[J]. Intemational Journal of Machine Tools & Manufacture, 2003, 43(6):605-615.
    [3] 王希靖,韩晓辉,郭瑞杰,等.搅拌摩擦焊接过程温度场数值模拟[J].焊接学报, 2005, 26(12):17-20. Wang Xijing, Han Xiaohui, Guo Ruijie, et al. Numerical simulation of temperature field in friction stir welding[J]. Transactions of the China Welding Institution, 2005, 26(12):17-20.
    [4] 张昭,刘会杰.搅拌头形状对搅拌摩擦焊材料变形和温度场的影响[J].焊接学报, 2011, 32(3):5-7. Zhang Zhao, Liu Huijie. Effect of tool shape on friction stirwelding material deformation and temperature field[J]. Transactions of the China Welding Institution, 2011, 32(3):5-7.
    [5] 赵旭东,张忠科,孙炳岩,等.基于DEFORM的搅拌摩擦焊接过程数值模拟及流动分析[J].机械研究与应用, 2009, 22(3):43-46. Zhao Xudong, Zhang Zhongke, Sun Bingyan, et al. Numerical simulation and analysis of the material flow of friction stir welding based on DEFORM[J]. Mechanical Research and Applicatio, 2009, 22(3):43-46.
    [6] Colegrove P A, Shercliff H R. 3-Dimensional CFD modeling of flow round a threaded friction stir welding tool profile[J]. Journal of Materials Processing Technology, 2005, 169(2):320-327.
    [7] 王大勇,冯吉才,王攀峰.搅拌摩擦焊接热输入模型[J].焊接学报, 2005, 26(3):25-32. Wang Dayong, Feng Jicai, Wang Panfeng. The heat input model of friction stir welding[J]. Transactions of the China Welding Institution, 2005, 26(3):25-32.
    [8] 沈洋.搅拌摩擦焊温度场与残余应力场模拟[D].西安:西安建筑科技大学, 2002.
计量
  • 文章访问数:  658
  • HTML全文浏览量:  49
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-16

目录

    /

    返回文章
    返回