高级检索

超细颗粒焊剂约束电弧超窄间隙焊接1Cr18Ni9Ti不锈钢的焊缝成形分析

郑韶先, 时哲, 韩峰, 孟倩

郑韶先, 时哲, 韩峰, 孟倩. 超细颗粒焊剂约束电弧超窄间隙焊接1Cr18Ni9Ti不锈钢的焊缝成形分析[J]. 焊接学报, 2015, 36(2): 67-70.
引用本文: 郑韶先, 时哲, 韩峰, 孟倩. 超细颗粒焊剂约束电弧超窄间隙焊接1Cr18Ni9Ti不锈钢的焊缝成形分析[J]. 焊接学报, 2015, 36(2): 67-70.
ZHENG Shaoxian, SHI Zhe, HAN Feng, MENG Qian. Ultra-narrow-gap weld of 1Cr18Ni9Ti stainless steel with constricted arc by ultra-fine granular flux[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(2): 67-70.
Citation: ZHENG Shaoxian, SHI Zhe, HAN Feng, MENG Qian. Ultra-narrow-gap weld of 1Cr18Ni9Ti stainless steel with constricted arc by ultra-fine granular flux[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(2): 67-70.

超细颗粒焊剂约束电弧超窄间隙焊接1Cr18Ni9Ti不锈钢的焊缝成形分析

基金项目: 国家自然科学基金资助项目(51105185)

Ultra-narrow-gap weld of 1Cr18Ni9Ti stainless steel with constricted arc by ultra-fine granular flux

  • 摘要: 将超细颗粒焊剂约束电弧超窄间隙焊接用于1Cr18Ni9Ti奥氏体不锈钢,通过改变焊接速度、电弧电压、焊接电流对焊缝成形进行了研究.结果表明,在热输入为1.75 kJ/mm和深宽比为1.34的条件下,也不易形成"梨形"焊道裂纹,并且单道焊接时熔化焊丝在超窄间隙内的填充高度可达11.5 mm.在其它焊接参数确定的情况下,随着电弧电压的增加,1Cr18Ni9Ti奥氏体不锈钢超窄间隙焊缝依次呈"凸焊缝"、"凹焊缝"及"电弧攀升"的成形规律.适合于超细颗粒焊剂约束电弧超窄间隙焊接1Cr18Ni9Ti奥氏体不锈钢的电弧电压与焊接电流匹配范围分别约为26~32 V和200~320 A.
    Abstract: Ultra-narrow-gap welding with constricted arc by ultra-fine granular flux was used to weld 1Cr18Ni9Ti austenitic stainless steel,and weld formation was studied at different welding speeds, arc voltages and welding currents. The results indicate that at the heat input of 1.75 kJ/mm and depth-to-width ratio of 1.34, pear-shaped bead cracking does not easily create, and filling height by molten wire in ultra-narrow gap can reach up to 11.5 mm in single-pass welding. At the other constant parameters, with the increase of arc voltage, ultra-narrow-gap weld formations of 1Cr18Ni9Ti austenitic stainless steel shows "convex weld", "concave weld" and "arc climbing up along the sidewalls from the gap bottom", respectively. Voltage range being fit for ultra-narrow-gap welding of 1Cr18Ni9Ti austenitic stainless steel with constricted arc by ultra-fine granular flux is 26-32 V at the current range of 200-320 A.
  • [1] Luo W. The corrosion resistance of 0Cr19Ni9 stainless steel arc welding joints with and without arc surface melting[J]. Materials Science and Engineering, 2003, 345:1-7.
    [2] 郑韶先,李德福,朱亮,等.超细颗粒焊剂约束电弧用于超窄间隙的焊接[J].机械工程学报, 2011, 47(8):83-87. Zheng Shaoxian, Li Defu, Zhu Liang, et al. Constricted arc by ultra-fine granular flux applied to ultra-narrow gap welding[J]. Chinese Journal of Mechanical Engineering, 2011, 47(8):83-87.
    [3] Zheng Shaoxian, Li Xiaolei, Che Jun, et al. Weld formation and heating mechanism in ultra-narrow gap with constricted arc by ultra-fine granular flux[J]. China Welding, 2012, 21(1):39-43.
    [4] Nakamura T, Hiraoka K. Ultra-narrow GMAW process with newly developed wire melting control system[J]. Science and Technology of Welding and Joining, 2001, 6(6):355-362.
    [5] Zhu Liang, Zheng Shaoxian, Chen Jianhong. Development of ultra-narrow gap welding with constrained arc by flux band[J]. China Welding, 2006, 15(2):44-49.
    [6] 郑韶先,韩峰,李小雷,等.不同形状金属丝网衬垫焊剂颗粒工艺对超窄间隙焊缝成形的影响[J].焊接学报, 2013, 34(3):77-80. Zheng Shaoxian, Han Feng, Li Xiaolei, et al. Influence of underlaying granular flux with different shapes of metal mesh on formation of ultra-narrow-gap weld[J]. Transactions of the China Welding Institution, 2013, 34(3):77-80.
    [7] Engelhard G, Habip L M, Pellkofer D, et al. Optimization of residual welding stresses in austenitic steel piping:prooftesting and numerical simulation of welding and postwelding processes[J]. Nuclear Engineering and Design, 2000, 198:141-151.
    [8] Shibahara M, Ito S, Serizawa H, et al. Simulation of pear-shaped bead cracking in narrow gap welding[J]. Transactions of Joining and Welding Research Institute, 2003, 32(2):335-341.
计量
  • 文章访问数:  281
  • HTML全文浏览量:  14
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-22

目录

    /

    返回文章
    返回