工业纯钛TA2/紫铜T2异种金属CMT焊接接头的微观组织和腐蚀性能
Microstructure, bonding mechanism and corrosion property of titanium TA2/copper T2 welded joint by cold metal transfer technology
-
摘要: 采用冷金属过渡技术(CMT)对工业纯钛TA2和紫铜T2异种金属薄板进行对接焊.焊接过程中,使焊丝偏向铜的一侧,铜母材和焊丝熔化形成熔焊接头,熔化的填充材料润湿钛母材,形成钎焊界面,实现钛和铜的熔钎焊连接.使用扫描电镜(SEM)、能谱分析(EDS)和力学试验研究焊接接头的组织以及连接机理.在室温下10%HCl溶液中,研究钛/铜异种金属CMT焊接接头的腐蚀行为.结果表明,钎焊界面由TiCu,Ti2Cu,AlCu2Ti等多种金属间化合物组成;焊缝区由铜基固溶体和Ti-Cu-Al-Ni-Fe五元素析出相组成;接头的抗拉强度达到205 MPa;焊接接头在室温10%HCl溶液中腐蚀7天后,钎焊界面出现腐蚀沟槽,14天后自行断裂.Abstract: This paper described a fundamental investigation of titanium TA2-copper T2 butt joint by cold metal transfer (CMT). During the welding process, wire was deviated from the edge of Cu sheet. A satisfied Ti-Cu CMT welding-brazing butt joint was obtained. Fusion welding joint was formed at copper side, while brazing joint was formed at titanium side. Welding-brazing joint was formed between titanium TA2-copper T2. Bonding mechanism of the welded joints was examined by scanning electron microscopy (SEM) with energy dispersive spectrometer (EDS) and tensile tests. Corrosion tests of Ti/Cu welded joint were conducted in solution of 10% HCl at room temperature. Results indicated that brazing interface consisted of various intermetallic compounds, i.e. Ti2Cu, TiCu, and AlCu2Ti. And the weld metal was composed of α-Cu solid solution and Ti-Cu-Al-Ni-Fe multi-phase. The tensile strength of the joint can reach to 205 MPa. There were corrosion grooves in brazing interfaces after corrosion for 7 days, and self-fracture after corrosion for 14 days.
-
-
[1] 李亚江,王娟,刘鹏.异种难焊材料的焊接及应用[M].北京:化学工业出版社, 2003. [2] 王希靖,韩方东,张昌青.钛合金TC4与紫铜的电阻钎焊工艺研究[J].稀有金属材料与工程, 2008, 37(S3):269-272. Wang Xijing, Han Fangdong, Zhang Changqing. Study of resistance brazing technology of TC4 alloy and red copper[J]. Rare Metal Materials and Engineering, 2008, 37(S3):269-272. [3] 白津生,周建明.钛与铜的TIG钎焊[J].焊接技术, 1991, 03:46-46. Bai Jinsheng, Zhou Jianming. Copper and titanium of TIG brazing[J]. Welding Technology, 1991, 03:46-46. [4] 宋敏霞,赵熹华,郭伟,等. Ti-6Al-4V/Cu/ZQSn10-10扩散连接[J].焊接学报, 2005, 26(12):29-31. Song Minxia, Zhao Xihua, Guo Wei, et al. Diffusion bonding of Ti-6Al-4V to ZQSn10-10 with a copper interlayer[J]. Transactions of the China Welding Institution, 2005, 26(12):29-31. [5] 汪殿龙,张志祥,梁志敏,等.交流CMT动态电弧特征及熔滴过渡行为分析[J].焊接学报, 2014, 35(3):6-10. Wang Dianlong, Zhang Zhixiang, Liang Zhimin, et al. Analysis of dynamic arc characteristics and melt tranfer behavior of AC CMT[J]. Transactions of the China Welding Institution, 2014, 35(3):6-10. [6] 石常亮,何鹏,冯吉才,等.铝/镀锌钢板CMT熔钎焊界面区组织与接头性能[J].焊接学报, 2006, 27(12):61-64. Shi Changliang, He Peng, Feng Jicai, et al. Interface microstructure and mechanical property of CMT welding-brazed joint between aluminum and galvanized steel sheet[J]. Transactions of the China Welding Institution, 2006, 27(12):61-64. [7] Murray J L. The Cu-Ti (copper-titanium) system[J]. Journal of Phase Equilibria, 1983, 4(1):81-95. [8] Villars P, Alan Prince, Okamoto H. Handbook of ternary alloy phase diagrams[M]. USA:ASM International, 1995. [9] Kemal Aydin, Yakup Kaya, Nizamettin Kahraman. Experimental study of diffusion welding/bonding of titanium to copper[J]. Material & Design, 2012, 37:356-368. -
期刊类型引用(10)
1. 常青,杨程伟,罗彬杰,李细峰. 基于小波变换的扩散焊超声C图像融合算法. 郑州大学学报(工学版). 2023(04): 54-59+87 . 百度学术
2. 王宪,罗彬杰,蒋音盈. 基于包络和极值约束的超声混叠信号稀疏分解. 上海第二工业大学学报. 2023(04): 351-358 . 百度学术
3. 金士杰,杨雅喃,田鑫,史思琪,林莉. 微流控芯片流道特征超声C扫描分析. 应用声学. 2023(06): 1123-1128 . 百度学术
4. 王海登,鄂楠,张智柏,刘向前. 扩散焊缺陷超声波检测信号特征. 焊接技术. 2021(02): 92-95+106 . 百度学术
5. 周李洪,龚金科,李兵. 基于Gabor小波的汽车金属材料表面微小缺陷快速识别. 中南大学学报(自然科学版). 2021(04): 1099-1108 . 百度学术
6. 董瑞琴,王婵,陈明,马啸啸,陈尧. 窄腹板扩散焊相控阵超声检测工艺探究. 无损探伤. 2021(05): 9-13 . 百度学术
7. 张斌,于润桥,刘怡,胡博. 钛合金扩散焊微小缺陷弱磁检测试验研究. 中国测试. 2020(03): 6-11 . 百度学术
8. 王斌,李升,朱富慧,李细锋. 基于超声无损检测的扩散连接界面缺陷尺寸评估. 焊接学报. 2020(08): 34-38+99 . 本站查看
9. 李文涛,周正干. 一种复杂结构件圆柱面扩散焊缝阵列超声检测方法. 机械工程学报. 2020(22): 1-7 . 百度学术
10. 迟大钊,齐聪成. 国内焊接缺陷声学无损检测研究综述. 精密成形工程. 2018(01): 74-81 . 百度学术
其他类型引用(7)
计量
- 文章访问数: 346
- HTML全文浏览量: 5
- PDF下载量: 164
- 被引次数: 17