高级检索

铝合金P-MIG焊稳定性近似熵神经网络预测

Approximate entropy GRNN forecast for aluminum alloy pulsed MIG welding stability

  • 摘要: 通过对不同焊接过程的电压信号进行近似熵计算与分析,得到了能够反映焊接过程稳定性的不同工艺参数与近似熵值的匹配模型和样本数据.在此基础上提出了运用广义回归神经网络(GRNN)对电弧电压信号近似熵进行预测的方法进而对铝合金脉冲MIG焊过程稳定性进行了识别.介绍了铝合金脉冲MIG焊过程稳定性近似熵广义回归神经网络预测模型的结构和算法,并对样本数据进行了预测试验.结果表明,该神经网络电弧电压近似熵预测的平均误差为9.08%,准确率为90.92%,满足用来评价铝合金脉冲MIG焊接过程稳定性的精度要求.

     

    Abstract: The model and sample data that able to reflect the stability of the different welding process parameters were obtained through analyzing welding voltage signals in aluminum alloy pulsed MIG welding by approximate entropy.On this basis,a method that predicts the approximate entropy of the voltage signals by generalized regression neural network(GRNN) was proposed.The structure and algorithm of the GRNN prediction model were introduced and the prediction experiments on ample data were done.The results show that the average error of the predictive value is 9.08%,the accuracy rate of it is 90.92%,and the results meet the forecast accuracy of aluminum alloy pulsed MIG welding process stability.

     

/

返回文章
返回