焊接电弧与活性组元对TIG焊熔池形貌影响的数值模拟
Numerical simulation of welding arc and surface-activating element on weld shape in TIG welding
-
摘要: 通过对FLUENT软件进行二次开发,建立了焊接电弧和焊接熔池模型,模拟分析了不同活性组元O元素含量下定点和移动TIG焊熔池形貌变化,对比了氩弧和氦弧的电弧参量及其对熔池形貌的影响.结果表明,由活性组元O元素含量变化导致的熔池内Marangoni对流变化是熔深增加的主要因素;在氩弧下,来自于电弧的气体剪切力对熔池形貌有较大影响;与氩弧相比,氦弧明显收缩,电流密度更大,更多的热量传递到熔池,增大了电磁力引起的内对流运动,可获得更深熔深.焊缝深宽比的模拟结果与试验结果吻合较好.Abstract: Welding arc and weld pool models were established by FLUENT software for spot and moving TIG welding of SUS304 stainless steel to investigate the effect of the surface-activating element oxygen on the weld shape and analyze the properties of argon arc and helium arc and their effects on the weld shape.The results show that the change of the Marangoni convection induced by different oxygen contents can be considered as one of the principal factors to increase penetration.The plasma drag force from the argon arc has obvious effect on the weld shape.Compared with the argon arc, the helium arc is more constricted, the welding current density is much greater and the much more heat flux is transferred into the weld pool, which increase the inward convection induced by the electromagnetic force, thus the deeper weld depth can be obtained.The calculated weld D/W ratio agrees with that of the experiment.