基于自由漂浮空间机器人的空间焊缝跟踪
Space welding seamtracking beased on free floating space robot
-
摘要: 空间机器人可以在宇宙空间自由飞行或浮游,协助或代替宇航员完成空间焊接作业。以平面自由漂浮双臂空间机器人为对象,研究了焊枪跟踪空间焊缝的位置与姿态的路径规划问题。在双臂空间机器人运动学模型基础上,对焊枪末端点速度的计算方法进行了深入讨论和分析,进而将空间机器人双臂末端点速度的求解问题定义为一个高维空间搜索问题,并采用遗传算法对其进行了优化计算,最后提出了双臂空间机器人跟踪空间焊缝的运动规划算法,并通过直线与圆弧焊缝跟踪的仿真试验进行了验证和分析。Abstract: Space robot can fly or float in the space to help or replace astronauts to perform space welding task.For a planar free floating dual-arm space robot, the path planning of welding torch position and configuration in tracking space weld is studied.On the basis of kinetic model of dual-arm space robot, the computational approach of robot arm end velocity is discussed and analyzed, and the solution of dual-arm end velocity is defined as a multi-dimentional searching problem, which is solved by introducing Genetic Algrithom to optimize calculation parameter.Finally, an algrithom of path planning of dual-arm space robot tracking space weld is proposed, which is verified and analyzed by two simulation experiments of line and arc welding seam tracking.
-
Keywords:
- space robot /
- motion planning /
- weld /
- tracking
-
0. 序言
镍基合金材料凭借着良好的力学性能、耐蚀性能、抗氧化性能等,在核工业领域得到了广泛应用[1]. 目前在国内二代加、三代核电工程核岛主设备制造中应用的镍基合金焊丝主要包括ERNiCrFe-7,ERNiCrFe-7A两类,其中以Mn,Nb为主要合金元素的ERNiCrFe-7A型焊丝应用最为普遍[2],但相关研究成果及制造经验表明该类型焊丝熔敷金属存在350 ℃高温强度不足的问题. Mo,Nb均是镍基高温合金中使用较为广泛的元素,由于原子半径较大,可以显著增大镍基固溶体晶格常数,并使屈服强度显著增大,同时也会对组织产生较大的影响,促进碳化物、拓扑密排相(TCP)等的形成[3]. 目前国内外众多学者致力于镍基高温合金材料研究,关于Mo,Nb元素在核电用镍基合金焊丝熔敷金属中的作用研究较少[4-6]. 为解决目前ERNiCrFe-7A型焊丝熔敷金属强度不足的问题,文中试制了一种以Mo,Nb为主要合金元素的镍基焊丝,采用JMatPro软件、光学显微镜(optical microscope, OM)、扫描电子显微镜(scanning electron microscope, SEM)、透射电子显微镜(transmission electron microscope, TEM)等分析手段对焊丝气体保护钨极电弧焊(gas tungsten arc welding, GTAW)熔敷金属组织、力学性能(室温、350 ℃高温拉伸性能)进行了分析.
1. 试验方法
熔敷金属试验采用Q235钢板作为母材,规格为300 mm × 200 mm × 40 mm. 堆焊的熔敷金属试样尺寸约为200 mm × 100 mm × 25 mm,具体示意图如图1所示. 采用GTAW焊接工艺进行堆焊,焊接工艺参数如表1所示.
表 1 GTAW工艺参数Table 1. GTAW parameters焊接电流I/A 电弧电压U/V 焊接速度v1/(mm·min−1) 送丝速度v2/(mm·min−1) 保护气体 层温控制T/℃ 220 13.5 120 1 150 纯Ar ≤ 150 熔敷金属试验用焊接材料为试制的镍基合金气体保护焊丝,规格为
$\phi $ 1.2 mm,焊丝化学成分如表2所示.表 2 试验用焊丝的化学成分(质量分数,%)Table 2. Chemical compositions of experimental wireC Si Mn S P Nb Fe Mo Al Ti Cr Ni 0.02 0.07 0.96 0.001 0.002 2.01 9.44 5.06 0.28 0.20 29.02 余量 采用JMatPro软件镍基合金数据库对试制焊丝的化学成分进行平衡相图计算. 在堆焊熔敷金属上切取微观组织分析试样,应在未经受多次焊接热循环的位置取样,通过磨制、抛光和腐蚀制成熔敷金属横截面金相试样. 利用OLYMPUS GX51型光学显微镜对于熔敷金属金相组织进行了观察,利用ZEISS EVO18型扫描电子显微镜进一步放大观察试样表面微观组织结构和断口形貌,并配合OX-FORD INCA能谱仪进行了区域成分分析. 采用JXA-8230型电子探针对组织进行了元素面分布分析. 采用Talos 200 X型原位多功能透射电镜观察分析了枝晶间第二相的形貌与结构. 借助AGS-X100KN电子拉伸试验机分别在室温、350 ℃下对熔敷金属进行拉伸试验.
2. 试验结果与分析
2.1 热力学平衡相计算结果
采用JMatPro软件以及相应的镍基合金数据库进行了热力学平衡相图计算,结果如图2所示.试验焊丝成分对应的初凝和终凝温度分别为1 340 和1 230 ℃,结晶温度区间约为110 ℃. 基体γ相固溶体在凝固结晶之后先后析出MC碳化物、σ相、δ相、M23C6型碳化物等,对应的析出温度分别为1 220,985,940,902 ℃,其中大部分析出物的析出量随着温度的降低不断增加,而MC碳化物、σ相在析出后分别在902,691 ℃分解消失. 凝固结晶后最终的组织包括γ 相、μ相、δ相、M23C6型碳化物等.
2.2 组织分析及元素分布
图3为熔敷金属中未经受多次热循环部位的典型组织. 由图3a可见,组织主要为柱状晶γ相,箭头标记位置为枝晶干γ相;图3b为图3a中虚线框标记区域的局部放大,在枝晶间的浅色区域芯部存在较多的第二相,呈连续分布的条状、断续分布不规则块状、点状等不同形态分布.图4为熔敷金属组织SEM微观形貌. 表3为图4中标记各标记区域、点的EDS分析结果. 图4中的A区域为枝晶干γ相,B区域为富Mo, Nb的γ相,该偏析区域宽度约在5 ~ 10 μm内. 在偏析区域B芯部存在灰黑色不规则片状C类第二相与灰白色骨架状D类第二相共生的组织,C类第二相富Mo,Cr元素,分别在17%,35%左右,结合文献[7]可知,C类第二相应为σ相,位于共生组织的芯部. D类第二相富含Nb,Mo,分别在20%,10%左右,结合相关文献[8-11]可知,D类第二相应为(Ni,Cr,Fe)2(Nb,Mo)型Laves相,位于共生组织边缘. 此外,还存在不大于1 μm的细小E类第二相,为富Nb,Ti的MC型复合碳化物.
表 3 熔敷金属各典型相能谱分析结果(质量分数,%)Table 3. EDS results of typical phases in deposited metal分析区域 Nb Mo Ti Ni Cr Fe A 0.87 4.64 0.09 52.02 30.17 11.54 B 2.69 6.91 0.50 48.41 30.40 9.11 C1 5.17 17.18 — 32.17 35.31 7.13 C2 5.32 17.21 — 31.31 35.11 7.23 D1 22.06 9.69 0.08 32.98 20.16 5.65 D2 19.21 10.69 — 33.25 21.92 6.35 E 30.01 3.73 9.23 14.27 11.78 3.29 图5为枝晶间偏析区芯部共晶组织背散射像. 图6为元素分布EPMA面扫描分析结果元素面分布情况. 由图6可进一步说明Mo,Nb元素在枝晶间产生了明显的偏析. 灰色片状的富Cr,Mo元素的σ相分布在共生组织的芯部,沿灰色相外围分布有富Nb,Mo元素的Laves相与富Nb,Ti的细小MC碳化物.
2.3 物相结构分析
图7为枝晶间析出相的TEM像及选区电子衍射花样(selected area electron diffraction,SAED)结果. 图7a为熔敷金属中枝晶间析出相的TEM暗场像,图7b和图7c为对应析出相的选区衍射斑点. 由图7b可知,该相为σ相(MoCrFe),四方结构,a = b = 0.908 nm,c = 0.475 nm,c/a = 0.52,每个晶胞约30个原子,尺寸大小在0.5 ~ 5 μm范围内. 由图6c可知,该相为MC碳化物,其中M为Nb,Ti等元素,面心立方结构,晶格常数为0.45 nm,尺寸大小在0.3 ~ 0.6 μm范围内.
2.4 力学性能测试结果
按照AWS B4.0M:2000(R2010) Stansard Methods for Mechanical Testing of Welds, ASTM E21−2009 Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials标准对熔敷金属分别进行了室温、350 ℃高温拉伸试验,结果表明熔敷金属的室温抗拉强度、屈服强度分别为775 ,530 MPa,塑性指标断后伸长率、断面收缩率均在30%以上,性能优于文献[12]中的52M-B熔敷金属性能. 图8为室温拉伸断口形貌. 由图8可见,断口微观形貌主要特征为沿晶分布的韧窝,在韧窝底部存在密集的析出相. 350 ℃高温熔覆金属的抗拉强度、屈服强度分别为672 ,465 MPa,塑性指标断口伸长率、断面收缩率均在30%以上,这表明熔敷金属具有较高的强度和较好的塑性.
3. 结论
(1)试制镍基合金焊丝GTAW熔敷金属金相组织主要为柱状晶γ相,在枝晶间存在Mo,Nb元素的偏析区域,偏析区域芯部存在σ相、MC碳化物和Laves相等多相共生的组织.
(2)枝晶间芯部的析出相包括富Nb,Ti元素的(Nb,Ti)C复合碳化物,富Mo,Cr元素的MoCrFe型σ相,富Nb,Mo的(Ni,Cr,Fe)2(Nb,Mo)型Laves相.
(3)试制镍基合金焊丝GTAW熔敷金属室温、350 ℃高温下的抗拉、屈服强度较高,塑性较好,室温拉伸断口形貌为沿晶分布的韧窝.
计量
- 文章访问数: 172
- HTML全文浏览量: 4
- PDF下载量: 43