The influence of laser-induced plume in the keyhole on the welding process
-
摘要: 光纤激光深熔焊接羽辉由匙孔内激光致蒸汽喷发所致,对焊接过程存在严重的负面影响. 文中通过改变匙孔内激光致蒸汽的喷发特征,研究羽辉对光纤激光深熔焊接过程的影响规律. 结果表明,随着焊接速度的提高,沿焊接方向的匙孔口长度逐渐增大,匙孔前壁的倾斜角则逐渐减小. 该现象导致孔内激光致喷发蒸汽的特征发生变化:底部摆动羽辉的喷发方向逐渐沿焊接反方向偏离激光束,狭长形羽辉的高度则逐渐降低直至消失;羽辉对焊接熔深的负面影响也逐渐减小直至消失,但飞溅数量逐渐增多,焊缝表面成形则逐渐恶化. 进一步分析表明,匙孔前壁激光致蒸汽的喷发方向变化是底部摆动羽辉的喷发方向和狭长形羽辉高度均发生改变的主要原因;提高焊接速度可降低羽辉对焊接过程的负面影响,但匙孔前壁激光致蒸汽对匙孔后壁的冲击作用将导致孔口沿焊接方向的长度变大、飞溅增多、焊缝表面成形质量变差.Abstract: The plume can be divided into two parts: the fluctuating portion that emerges from the keyhole, called the lower fluctuating plume, and the portion that resembles a focused laser beam, referred to as the narrow plume. The changes in the morphology of these two plume parts and their influence on the welding process were studied. The results show that with increasing welding speed, the eruption direction of the lower fluctuating plume gradually deviates from the laser beam in the opposite direction of welding. The height of the narrow and long plume gradually decreases until it disappears. The effect of plume glow on the depth/width of the melt gradually decreases until it disappears. The forming quality of the weld surface gradually deteriorates. Increasing the welding speed reduces the negative impact of the narrow and elongated plume on the depth/width of the melt. The impact of the lower fluctuating plume on the back wall of the keyhole causes the length of the orifice along the welding direction to become larger, increasing spatter and reducing the forming quality of the weld surface.
-
Keywords:
- fiber laser /
- welding speed /
- plume /
- evaporative vapor /
- penetration
-
-
-
[1] Yu H, Tan S, Pan H, et al. High efficiency 600 W, 100 μm wavelength stabilized fiber coupled laser diode module for fiber laser pumping[C]//High-Power Diode Laser Technology XIX. 2021.
[2] Saha P, Datta S, Raza M S, et al. Effects of heat input on weld-bead geometry, surface chemical composition, corrosion behavior and thermal properties of fiber laser-welded nitinol shape memory alloy[J]. Journal of Materials Engineering and Performance, 2019, 28(5): 2754 − 2763. doi: 10.1007/s11665-019-04077-0
[3] Sharma L, Chhibber R. Study of weld bead chemical, microhardness & microstructural analysis using submerged arc welding fluxes for linepipe steel applications[J]. Ceramics International, 2020, 46(15): 25677.
[4] Hao K, Wang H, Gao M, et al. Laser welding of AZ31B magnesium alloy with beam oscillation[J]. Journal of Materials Research and Technology, 2019, 8(3): 3044 − 3053.
[5] 赵乐, 曹政, 邹江林, 等. 高功率光纤激光深熔焊接匙孔的形貌特征[J]. 中国激光, 2020, 47(11): 1102005. doi: 10.3788/CJL202047.1102005 Zhao Le, Cao Zheng, Zou Jianglin, et al. Keyhole morphological characteristics in high-power deep penetration fiber laser welding[J]. Chinese Journal of Lasers, 2020, 47(11): 1102005. doi: 10.3788/CJL202047.1102005
[6] Quintino L, Costa A, Miranda R, et al. Welding with high power fiber lasers a preliminary study[J]. Materials and Design, 2007, 28(4): 1231 − 1237.
[7] 徐国建, 李响, 杭争翔, 等. 光纤激光及CO2激光焊接高强钢[J]. 激光与光电子学进展, 2014, 51(3): 031403. Xu Guojian, Li Xiang, Hang Zhengxiang, et al. Fiber laser and CO2 laser welding of high-strength steel[J]. Laser & Optoelectronics Progress, 2014, 51(3): 031403.
[8] Li R, Wang T, Wang C, et al. A study of narrow gap laser welding for thick plates using the multi-layer and multi-pass method[J]. Optics & Laser Technology, 2014, 64: 172 − 183.
[9] Zhang B, Dong Y, Du Y, et al. Microstructure and formability performance of fiber laser welded 1.2 GPa grade hot-rolled TRIP steel joints[J]. Optics & Laser Technology, 2021, 143(34): 107 − 341.
[10] Shcheglov P Y, Gumenyuk A V, Gornushkin I B, et al. Vapor–plasma plume investigation during high-power fiber laser welding[J]. Laser Physics, 2013, 23(1): 016001. doi: 10.1088/1054-660X/23/1/016001
[11] Kawahito Y, Kinoshita K, Matsumoto N, et al. Effect of weakly ionised plasma on penetration of stainless steel weld produced with ultra high power density fibre laser[J]. Science & Technology of Welding & Joining, 2013, 13(8): 749 − 753.
[12] Li S C, Chen G, Zhang M J, et al. Dynamic keyhole profile during high-power deep-penetration laser welding[J]. Journal of Materials Processing Technology, 2014, 214(3): 565 − 570. doi: 10.1016/j.jmatprotec.2013.10.019
[13] 韩雪, 赵宇, 邹江林, 等. 基于可视化观察的光纤激光深熔焊接羽辉形成原因分析[J]. 中国激光, 2020, 47(6): 0602004. doi: 10.3788/CJL202047.0602004 Han Xue, Zhao Yu, Zou Jianglin, et al. Analysis of plume formation in fiber laser deep penetration welding based on visual observation[J]. Chinese Journal of Lasers, 2020, 47(6): 0602004. doi: 10.3788/CJL202047.0602004
[14] Chen G, Zhang M, Zhao Z, et al. Measurements of laser-induced plasma temperature field in deep penetration laser welding[J]. Optics & Laser Technology, 2013, 45: 551 − 557.
[15] Cai Y, Heng H, Li F, et al. The influences of welding parameters on the metal vapor plume in fiber laser welding based on 3D reconstruction[J]. Optics & Laser Technology, 2018, 107: 1 − 7.
[16] Li M, Xiao R S, Zhou J L et al. A multiple synchronous imaging method for strong illuminants induced during a hot working process[J]. Laser Physics Letters, 2019, 16(6): 66003 − 66003. doi: 10.1088/1612-202X/ab1896
[17] Zhang M, Zhang Z, Tang K, et al. Analysis of mechanisms of underfill in full penetration laser welding of thick stainless steel with a 10 kW fiber laser[J]. Optics & Laser Technology, 2018, 98: 97 − 105.
[18] 邹江林, 吴世凯, 肖荣诗, 等. 高功率光纤激光和CO2激光焊接熔化效率对比[J]. 中国激光, 2013, 40(8): 0803002. doi: 10.3788/CJL201340.0803002 Zou Jianglin, Wu Shikai, Xiao Rongshi, et al. Comparison of melting efficiency in high power fiber laser and CO2 laser welding[J]. Chinese Journal of Lasers, 2013, 40(8): 0803002. doi: 10.3788/CJL201340.0803002
[19] 张明军. 万瓦级光纤激光深熔焊接厚板金属蒸气行为与缺陷控制[D]. 长沙: 湖南大学, 2013. Zhang Mingjun. Study on the behavior of metallic vapor plume and defects control during deep penetration laser welding of thick plate using 10-kW level high power fiber laser [D]. Changsha: Hunan University, 2013.
[20] Zou J L, Yang W X, Wu S K, et al. Effect of plume on weld penetration during high-power fiber laser welding[J]. Journal of Laser Applications, 2016, 28(2): 022033.
[21] Li S, Chen G, Zhang Y, et al. Investigation of keyhole plasma during 10 kW high power fiber laser welding[J]. Laser Physics, 2014, 24(10): 106003. doi: 10.1088/1054-660X/24/10/106003
[22] Zhao L, Tsukamoto S, Arakane G, et al. Prevention of porosity by oxygen addition in fiber laser and fiber laser–GMA hybrid welding[J]. Science & Technology of Welding & Joining, 2014, 19(2): 91 − 97.
[23] Schmidt L, Schricker K, Bergmann J P, et al. Effect of local gas flow in full penetration laser beam welding with high welding speeds[J]. Applied Sciences, 2020, 10(5): 1 − 19. doi: 10.3390/app10051867
[24] Bao H T, Liu J H, Liu k, et al. Effect of vacuum laser welding process parameters on penetration depth of AZ31 magnesium alloy and defect analysis[J]. Applied laser, 2008, 28(5): 570 − 577.
[25] 张高磊, 孔华, 邹江林, 等. 高功率光纤激光深熔焊接飞溅特性以及离焦量对飞溅的影响[J]. 中国激光, 2021, 48(22): 79 − 86. Zhang Gaolei, Kong Hua, Zou Jianglin, et al. Spatter characteristics of high-power fiber laser deep penetration welding and effect of defocusing amount[J]. Chinese Journal of Lasers, 2021, 48(22): 79 − 86.
[26] Zou J L, Han X, Zhao Y, et al. Investigation on plume formation during fiber laser keyhole welding based on in-situ measurement of particles in plume[J]. Journal of Manufacturing Processes, 2021, 65(15): 153 − 160.
[27] 崔冰, 宋拢雨, 刘正未, et al. Study of the morphology and properties of diamond joints brazed with carbide-reinforced Cu-Sn-Ti filler metal[J]. 中国焊接, 2022, 31(3): 8. Cui Bing, Song Longyu, Liu Zhangwei, et al. Study of the morphology and properties of diamond joints brazed with carbide-reinforced Cu-Sn-Ti filler metal[J]. China Welding, 2022, 31(3): 53 − 60.
[28] Zou J L, Ha N, Xiao R S, et al. Interaction between the laser beam and keyhole wall during high power fiber laser keyhole welding[J]. Optics Express, 2017, 25(15): 17650 − 17656. doi: 10.1364/OE.25.017650
[29] 赵乐, 韩雪, 邹江林, 等. 光纤激光深熔焊接小孔形成过程的研究[J]. 激光与光电子学进展, 2020, 57(7): 227 − 233. Zhao Le, Han Xue, Zou Jianglin, et al. Research on formation process of keyhole during fiber laser deep penetration welding[J]. Laser & Optoelectronics Progress, 2020, 57(7): 227 − 233.
[30] Zhang G L, Zhu B Q, Zou J L, et al. Correlation between the spatters and evaporation vapor on the front keyhole wall during fiber laser keyhole welding[J]. Journal of Materials Research and Technology, 2020, 9(6): 15143 − 15152. doi: 10.1016/j.jmrt.2020.10.103
[31] Greses J, Hilton P A, Barlow C Y, et al. Plume attenuation under high power Nd: yttritium aluminum garnet laser welding[J]. Journal of Laser Applications, 2004, 16(1): 9 − 15. doi: 10.2351/1.1642636
[32] Abe Y, Mizutani M, Kawahito Y, et al. Deep penetration welding with high-power laser under vacuum[J]. Trans Joining Weld Res Inst, 2010, 40(1): 9 − 15.
[33] Zou J L, Wu S K, Yang W X, et al. A novel method for observing the micro-morphology of keyhole wall during high-power fiber laser welding[J]. Materials & Design, 2016, 89(6.): 785 − 790.
[34] Fabbro R, Slimani S, Coste F, et al. Study of keyhole behaviour for full penetration Nd-Yag CW laser welding[J]. Journal of Physics D:Applied Physics, 2005, 38(12): 1881. doi: 10.1088/0022-3727/38/12/005
[35] Oiwa S, Kawahito Y, Mizutani M, et al. Effect of atmosphere above specimen on welding results during remote welding[J]. Journal of Laser Applications., 2011, 23(2): 022007. doi: 10.2351/1.3567959
[36] Lescoute E, Hallo L, Hébert D, et al. Experimental observations and modeling of nanoparticle formation in laser-produced expanding plasma[J]. Physics of Plasmas, 2008, 15(6): 63507. doi: 10.1063/1.2936267
[37] Shcheglov P Y, Uspenskiy S A, Gumenyuk A V, et al. Plume attenuation of laser radiation during high power fiber laser welding[J]. Laser Physics Letters, 2011, 8(6): 475 − 480. doi: 10.1002/lapl.201110010
[38] 牛小男, 崔丽, 王鹏, 等. 镍铝青铜过渡层对钛合金/不锈钢异种材料激光焊接头组织与力学性能的影响[J]. 焊接学报, 2022, 43(1): 42 − 47. Wang Xiaonan, Cui Li, Wang Peng, et al. Effect of nickel-aluminum bronze transition layer on microstructure and mechanical properties of laser welding head of titanium alloy/stainless steel dissimilar material[J]. Transactions of the China Welding Institution, 2022, 43(1): 42 − 47.
-
期刊类型引用(14)
1. 罗颖,张义凤,丁杰. 基于图像分割和边缘提取相融合的射线缺陷图像增强算法研究. 物联网技术. 2024(02): 29-32 . 百度学术
2. 吴家洲,刘君,施佳文,张胜. 激光焊缝图像分割与颜色识别方法研究. 激光技术. 2023(05): 723-728 . 百度学术
3. 郭亚玲,江泽标,彭鑫,扶祥祥,吴少康,权西平,杨希法. 二氧化碳致裂对煤孔隙结构影响的试验研究. 煤矿安全. 2022(07): 20-26 . 百度学术
4. 马永力,曾瑄,黄志开. 数字碑帖图像的二值化算法研究. 湖北理工学院学报. 2022(04): 18-22+68 . 百度学术
5. 齐继阳,张艳琼,刘亮. 基于机器视觉的零件毛刺检测. 机械设计与研究. 2021(02): 24-27 . 百度学术
6. 戴漩领,茅云生,周永清. 基于改进分水岭的焊缝分割算法. 船舶工程. 2021(S1): 428-433 . 百度学术
7. 黄静,蒋泽宁. 基于灰度拉伸和遗传算法的焊缝图像二值化算法. 智能计算机与应用. 2021(09): 99-102+107 . 百度学术
8. 王思宇,高炜欣,张翔松. X射线焊缝图像缺陷检测算法综述. 热加工工艺. 2020(15): 1-8 . 百度学术
9. 付浩龙,赵津,席阿行,刘东杰,刘子豪. 无人机视觉下基于改进OTSU的负障碍物检测. 计算机应用与软件. 2020(09): 105-110 . 百度学术
10. 张斌,常森,王桔,王倩. 基于遗传算法的激光视觉焊缝特征点提取. 中国激光. 2019(01): 80-90 . 百度学术
11. 齐继阳,李金燕. Feature extraction of welding defect based on machine vision. China Welding. 2019(01): 56-62 . 百度学术
12. 王兴东,杨雅伦,孔建益,施毅. 基于区域优化的等厚对接焊缝图像二值化方法. 中国机械工程. 2019(14): 1756-1763 . 百度学术
13. 黄靖,李俊男,刘丽桑,罗堪,夏正邦,王泽洲. 基于形态学重建与OTSU的极耳焊缝图像分割方法. 福建工程学院学报. 2019(04): 359-364 . 百度学术
14. 卢斯伟,胡晓兵,文华,张波,杨雄. 基于双边滤波算法下的焊缝跟踪系统研究. 机械. 2017(07): 11-14+23 . 百度学术
其他类型引用(19)