高级检索

高导热石墨/铝合金钎焊散热封装工艺

张俊杰, 夏勇, 闫耀天, 曹健, 亓钧雷

张俊杰, 夏勇, 闫耀天, 曹健, 亓钧雷. 高导热石墨/铝合金钎焊散热封装工艺[J]. 焊接学报, 2025, 46(2): 1-6, 54. DOI: 10.12073/j.hjxb.20240907002
引用本文: 张俊杰, 夏勇, 闫耀天, 曹健, 亓钧雷. 高导热石墨/铝合金钎焊散热封装工艺[J]. 焊接学报, 2025, 46(2): 1-6, 54. DOI: 10.12073/j.hjxb.20240907002
ZHANG Junjie, XIA Yong, YAN Yaotian, CAO Jian, QI Junlei. Brazing and thermal packaging process of high thermal conductivity graphite/aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(2): 1-6, 54. DOI: 10.12073/j.hjxb.20240907002
Citation: ZHANG Junjie, XIA Yong, YAN Yaotian, CAO Jian, QI Junlei. Brazing and thermal packaging process of high thermal conductivity graphite/aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(2): 1-6, 54. DOI: 10.12073/j.hjxb.20240907002

高导热石墨/铝合金钎焊散热封装工艺

基金项目: 国家自然科学基金资助项目(52175303);国家杰出青年科学基金(52125502);海南省重点研发计划(ZDYF2024SHFZ082)
详细信息
    作者简介:

    张俊杰,博士研究生;主要研究方向为新材料及异种材料连接;Email:zhangjjhit@126.com

    通讯作者:

    亓钧雷,博士,教授;Email:jlqi@hit.edu.cn.

  • 中图分类号: TG 425;TG 454

Brazing and thermal packaging process of high thermal conductivity graphite/aluminum alloy

  • 摘要:

    为了实现高导热石墨与铝合金(5A06)的可靠低温钎焊连接,采用Sn-Pb钎料进行钎焊,并研究其在母材表面的铺展行为. 结果表明,通过对高导热石墨表面进行金属化处理,有效改善了金属与石墨之间的润湿性,解决了由于热膨胀系数不匹配引起的界面问题,并降低了因声子散射导致的界面接触热阻. 在优化的工艺条件下,即Ag-Cu-Ti钎料层厚度为0.2 mm、钎焊温度860 ℃、保温时间10 min 的金属化处理工艺,以及Sn-Pb钎料钎焊温度210 ℃、保温时间15 min 的钎焊工艺,制备得到的复合结构整体导热性能显著提升. 此外,设计并测试了一款均热板产品,以评估其散热性能. 试验结果表明,尺寸为 210 mm× 25 mm× 3.5 mm 的条状均热板,其导热系数可高达 558 W/(m·K),而尺寸为 233.4 mm× 200 mm× 24 mm 的大型均热板适用于大型集成电子设备,其最大导热系数可达 460 W/(m·K). 试验结果不仅展示了钎焊技术在提升热管理效率方面的潜力,也为高性能电子设备的热管理提供了新的材料解决方案.

    Abstract:

    In order to achieve reliable low-temperature brazing of high-thermal-conductivity graphite and aluminum alloy (5A06), Sn-Pb solder was used for brazing, and its spreading behavior on the base material was studied. The results show that metallization of the high-thermal-conductivity graphite surface effectively improves the wettability between metal and graphite, mitigates interfacial issues caused by mismatched thermal expansion coefficients, and reduces interfacial thermal resistance due to phonon scattering. Under optimized process conditions—Ag-Cu-Ti solder layer thickness of 0.2 mm, brazing temperature of 860 ℃, and holding time of 10 min for the metallization process, along with Sn-Pb solder brazing at 210 ℃ with a holding time of 15 min—the overall thermal conductivity of the composite structure was significantly enhanced. Furthermore, a heat spreader was designed and tested to evaluate its thermal performance. Experimental results show that a strip-shaped heat spreader with dimensions of 210 mm× 25 mm× 3.5 mm achieves a thermal conductivity of up to 558 W/(m·K), while a larger heat spreader with dimensions of 233.4 mm× 200 mm× 24 mm, suitable for large-scale integrated electronic devices, reaches a maximum thermal conductivity of 460 W/(m·K). This study not only demonstrates the potential of brazing technology in improving thermal management efficiency but also provides a novel material solution for the thermal management of high-performance electronic devices.

  • 图  1   均热样板热性能测试方案(mm)

    Figure  1.   Thermal performance testing scheme for the isothermal plate. (a) schematic diagram; (b) thermocouple measurement point locations

    图  2   不同厚度钎料层的表面金属化石墨

    Figure  2.   Surface metallization of graphite with brazing material layers of different thicknesses. (a) 0.1 mm; (b) 0.2 mm; (c) 0.3 mm

    图  3   不同钎焊温度下获得的接头界面微观组织

    Figure  3.   Microstructural analysis of joint interfaces obtained at different brazing temperatures. (a) surface metallization; (b) 860 ℃; (c) 870 ℃

    图  4   石墨均热板

    Figure  4.   Graphite thermal plate. (a) thermal plate specimens; (b) metallographic cross-section; (c) brazing interface SEM

    图  5   均热样板热性能测试

    Figure  5.   Thermal performance testing of the homogeneous plate. (a) simulation model; (b) simulation results; (c) temperature curves; (d) thermal conductivity coefficients

    图  6   均热板产品热性能测试

    Figure  6.   Thermal performance testing of thermal plate products. (a) simulation model; (b) simulation results; (c) thermocouple measurement point locations; (d) temperature curve

    表  1   各相成分分析(原子分数,%)

    Table  1   Analysis of composition in different phases

    位置AgCuTiC
    A1.6269.2729.10
    B88.0211.98
    C2.8895.341.79
    D2.5795.531.90
    E0.214.030.7794.99
    下载: 导出CSV

    表  2   仿真主要数据

    Table  2   Key simulation data

    结构件尺寸
    L×W×H/mm
    石墨尺寸
    L×W×H/mm
    石墨导热系数
    γ1/(W ·m−1·K−1)
    铝合金导热系数
    γ2/(W ·m−1·K−1)
    210 × 25 × 3.5 200 × 15 × 2 1 500 180
    下载: 导出CSV
  • [1]

    Govindaraju N, Singh R N. Processing of nanocrystalline diamond thin films for thermal management of wide-bandgap semiconductor power electronics[J]. Materials Science and Engineering: B, 2011, 176(14): 1058 − 1072. doi: 10.1016/j.mseb.2011.05.042

    [2] 王娟娟, 余英丰, 景华, 等. 微电子封装材料及其可靠性研究进展[J]. 中国胶粘剂, 2023, 32(2): 25 − 41,50.

    Wang Juanjuan, Yu Yingfeng, Jing Hua, et al. Research progress in microelectronic packaging materials and their reliability[J]. China Adhesives, 2023, 32(2): 25 − 41,50.

    [3]

    Vianco P T. A review of interface microstructures in electronic packaging applications: Brazing and welding technologies[J]. Jom, 2022, 74(9): 3557 − 77. doi: 10.1007/s11837-022-05308-x

    [4]

    Miao W, Wang M. Importance of electron-phonon coupling in thermal transport in metal/semiconductor multilayer films[J]. International Journal of Heat and Mass Transfer, 2023, 200: 123538. doi: 10.1016/j.ijheatmasstransfer.2022.123538

    [5]

    Wu Y J, Yagi Takashi, Xu Y B. Interfacial thermal resistance of metal-nonmetal interfaces under bidirectional heat fluxes[J]. International Journal of Heat and Mass Transfer, 2021, 180: 121766. doi: 10.1016/j.ijheatmasstransfer.2021.121766

    [6] 孔德浩, 张铭雨, 季雨凯, 等. 石墨与金属焊接技术研究现状[J]. 焊接, 2024(1): 73 − 80. doi: 10.12073/j.hj.20230619006

    Kong Dehao, Zhang Mingyu, Ji Yukai, et al. Research status of joining between graphite and metals[J]. Welding & Joining, 2024(1): 73 − 80. doi: 10.12073/j.hj.20230619006

    [7]

    Guo W, Hu Y, Chen X, et al. Super-thick highly thermally conductive graphite/Sn laminated composites assembled by active Ti-containing Sn-Ag-Ti filler metals[J]. Diamond and Related Materials, 2023, 138: 110253. doi: 10.1016/j.diamond.2023.110253

    [8]

    Tan Z Q, Li Z Q, Xiong D B, et al. A predictive model for interfacial thermal conductance in surface metalized diamond aluminum matrix composites[J]. Materials & Design, 2014, 55: 257 − 262.

    [9]

    Chen Z B, Bian H, Hu S P, et al. Surface modification on wetting and vacuum brazing behavior of graphite using AgCu filler metal[J]. Surface and Coatings Technology, 2018, 348: 104 − 110. doi: 10.1016/j.surfcoat.2018.05.039

    [10]

    Zhao J W, Zhao R, Huo Y K, et al. Effects of surface roughness, temperature, and pressure on interface thermal resistance of thermal interface materials[J]. International Journal of Heat and Mass Transfer, 2019, 140: 705 − 716. doi: 10.1016/j.ijheatmasstransfer.2019.06.045

    [11]

    Zhao Y, Sugio K, Choi Y, et al. Effect of anisotropic thermal conductivity of graphite flakes and interfacial thermal resistance on the effective thermal conductivity of graphite flakes/aluminum composites[J]. Materials Transactions, 2021, 62(1): 98 − 104. doi: 10.2320/matertrans.MT-M2020071

    [12]

    Zhu P, Zhang Q, Qu S, et al. Effect of interface structure on thermal conductivity and stability of diamond/aluminum composites[J]. Composites Part A: Applied Science and Manufacturing, 2022, 162: 107161. doi: 10.1016/j.compositesa.2022.107161

  • 期刊类型引用(1)

    1. 王守明,高振坤,陈建华,丁韦,许蕊,刘国庆,谭锦红. U71Mn钢闪光-摩擦复合焊接头组织及性能研究. 金属加工(热加工). 2025(04): 67-73+78 . 百度学术

    其他类型引用(0)

图(6)  /  表(2)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  31
  • PDF下载量:  72
  • 被引次数: 1
出版历程
  • 收稿日期:  2024-09-06
  • 网络出版日期:  2025-02-23
  • 刊出日期:  2025-02-24

目录

    /

    返回文章
    返回