高级检索

先进封装铜柱凸点互连技术及可靠性发展现状

刘旭东, 撒子成, 冯佳运, 李浩喆, 田艳红

刘旭东, 撒子成, 冯佳运, 李浩喆, 田艳红. 先进封装铜柱凸点互连技术及可靠性发展现状[J]. 焊接学报. DOI: 10.12073/j.hjxb.20240718001
引用本文: 刘旭东, 撒子成, 冯佳运, 李浩喆, 田艳红. 先进封装铜柱凸点互连技术及可靠性发展现状[J]. 焊接学报. DOI: 10.12073/j.hjxb.20240718001
LIU Xudong, SA Zicheng, FENG Jiayun, LI Haozhe, TIAN Yanhong. The Development Status On Advanced Packaging Copper Pillar Bump Interconnection Technology and Reliability[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240718001
Citation: LIU Xudong, SA Zicheng, FENG Jiayun, LI Haozhe, TIAN Yanhong. The Development Status On Advanced Packaging Copper Pillar Bump Interconnection Technology and Reliability[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240718001

先进封装铜柱凸点互连技术及可靠性发展现状

基金项目: 国家自然科学基金(U2241223),黑龙江省“头雁”团队(HITTY-20190013)经费资助
详细信息
    作者简介:

    刘旭东,硕士研究生;主要研究方向为电子封装与可靠性;Email: 23S009130@stu.hit.edu.cn

    通讯作者:

    田艳红,博士,教授;Email: tianyh@hit.edu.cn.

  • 中图分类号: TG425

The Development Status On Advanced Packaging Copper Pillar Bump Interconnection Technology and Reliability

  • 摘要:

    随着电子元器件朝着轻量化发展,铜柱凸点因其独特的结构而具有更小的尺寸和更高的互连密度,提供了一种高性能、高可靠性的倒装芯片互连方案. 本文对比了传统C4凸点与铜柱凸点的差异,总结出铜柱凸点在结构与性能上的优势和目前存在的一些问题. 讨论了电镀制备铜柱凸点的工艺流程,详细叙述了镀液成分和电镀参数对铜柱凸点质量的影响. 分析了铜柱凸点在热循环和电迁移可靠性方面的表现,包括热老化、热循环、电迁移等试验对铜柱凸点的影响. 最后对铜柱凸点未来发展方向进行了总结和展望.

    Abstract:

    With the rapid development of the lightweight electronic components, copper pillar bump (CPB) provides a high-performance, high-reliability flip-chip interconnect solution with its unique structure, smaller size and higher connection density. In this paper, the differences between conventional C4 bumps and CPB are compared, and the advantages of CPB in terms of structure and performance are summarized, while the challenges faced by CPB are presented. The process flow of the electroplating method is discussed, and the effects of the plating solution composition and plating parameters on the quality of CPB are reviewed. This paper summarizes the performance of CPB in terms of thermal-cycle and electromigration reliability, including the effects of thermal aging, thermal cycling, and electromigration tests on CPB. Finally, the future development direction of CPB is summarized and prospected.

  • 拥有良好比强度的铝合金是现代工业的重要金属材料,其中Al-Zn-Mg-Cu铝合金因其优异性能在航空航天,高速机车等领域被广泛应用[1-2]. 然而目前大规模使用的Al-Zn-Mg-Cu铝合金构件所采用的加工制造方法往往存在材料浪费严重、加工制造周期长的特点. 为进一步提高材料利用率和制造效率以实现绿色智能化制造,近净成型方法—电弧增材制造技术制备Al-Zn-Mg-Cu合金受到了广泛的关注.

    除传统的铸造方法外,Zuo等人利用液滴喷射成型的方法,制备了7系铝合金[3]. 随后Kaufmann以及Martin等人[4-5]先后采用以激光为热源的增材制造方法制备了不同成分的7系铝合金,并且对于激光增材制造7系铝合金存在的热裂纹问题进行优化,分别采用了改变激光功率、Si元素直接合金化以及纳米薄膜合金化的方式一定程度上抑制了热裂纹的产生.

    Dong等人[6]采用GTA增材制造方法制备了7系铝合金,分析了电弧增材制备的沉积态铝合金中存在的组织问题,揭示了电弧增材过程中的动态析出行为并且对其组织性能进行优化. 但是目前所制备的7系铝合金仍存在一定的组织问题,例如凝固缩孔,塑性过低等. 传统冶金学中,Sc元素可以通过促进异质形核的方式实现铝合金组织细化,从而一定程度上消除凝固过程中存在的缺陷问题,优化铝合金组织并且形成纳米级别析出相,通过弥散强化进一步提升力学性能[7].

    有学者在7系铝合金的铸造过程中加入Sc[8],通过引入Sc带来的晶粒细化和弥散强化效果优化了铸态7系铝合金的性能. Zhu和Wang等人[9-10]尝试在激光选区熔覆中加入Al、Sc和Zr的化合物颗粒,作为晶粒形核的孕育剂,通过晶粒细化的方式避免了裂纹的形成. 其中Sc,Zr元素还可通过时效过程与原本存在的时效后强化相共同发挥提升力学性能的作用. 因此希望在电弧增材制造7系铝合金中引入Sc元素实现高效高质的7系铝合金电弧增材制造.

    常见的电弧增材合金化方法有在保护气中送进气体合金化元素的保护气合金化方式,在表面涂铺含有合金化聚合物的表面涂敷方法以及多根送丝方法的多丝合金化方法[11-13]. 其中多丝合金化方法可高效制备成分均匀构件,并可实现定量化成分设计[14].

    多丝电弧增材制造过程中,在送进多种丝材时,通过控制工艺参数可以多丝的均匀混合,以实现特殊成分合金的均匀制备[15-16]. 此外,该方法可以进一步优化工艺性能和组织缺陷情况. 因此利用双丝电弧增材制造技术制备Al-Mg-Zn-Cu-Sc合金即实现Al-Zn-Mg-Cu合金的Sc微合金化,是改善该合金系工艺性能和组织成型情况的可行方法.

    文中针对7系铝合金电弧增材合金化的问题,提出了利用送进含Sc的第二根丝材,将Sc元素引入7系铝合金的工艺方法,并对比分析不同工艺参数下的组织性能特点,以获得高效快速的含Sc7系铝合金制备工艺.

    试验设计了双丝GTA增材制造系统,其中双丝从同向单侧不同角度送进(图1),GTA电源采用Miller Dynasty 350 GTAW变极性频率可调电源. 两根铝合金丝材分别从不同位置送进,经过GTA加热融化形成熔池,在平台运动过程中随之凝固,完成沉积过程. 沉积过程中为实现铝合金表面氧化膜的清理,GTA电源采用交流变极性模式,同时为研究扫描速度的影响,具体试验参数如表1所示. 采用的送进丝材为Al-Zn-Mg-Cu丝材和Al-Mg-Sc丝材,具体成分如表2所示.

    图  1  双丝电弧增材制造系统示意图
    Figure  1.  Schematic of dual wire arc additive manufacturing system

    沉积过程中,为观察熔滴过渡情况和电弧稳定性,利用Xiris高动态相机以及其相关配套软件对于沉积过程进行实时监控. 在沉积过程完成后,利用电火花线切割从沉积完成的试样中切取不同尺寸的试样进行组织观察和力学性能测试,其中进行微观组织观察的试样经金相砂纸研磨和抛光过程后,利用HNO3∶HCl∶HF∶H2O为5∶3∶2∶180的凯勒试剂进行腐蚀. 随后利用KEYENCE-VHX-1000E超景深光学显微镜进行微观组织观察. 利用Instron5569电子万能试验机进行拉伸力学性能试验,获得拉伸力学性能并且利用蔡司Merlin Compact场发射扫描电镜对于增材得到的沉积态试样截面以及拉伸试验获得的断口试样进行观察. 拉伸试样的尺寸如图2所示.

    表  1  焊接工艺参数
    Table  1.  Welding process parameters
    等效电
    I/A
    电弧长度
    h/mm
    层冷温
    T/℃
    扫描速度
    v /(cm·min−1)
    变极性频率
    f/Hz
    正负半
    波比B(%)
    10541001010070
    10541002010070
    10541003010070
    下载: 导出CSV 
    | 显示表格
    表  2  丝材和基板成分(质量分数,%)
    Table  2.  Composition of welding wire and substrate
    丝材AlZnMgCuScMn
    Al-Zn-Mg-Cu87.7822.3
    Al-Mg-Sc92.76.30.30.7
    基板92.26.30.5
    下载: 导出CSV 
    | 显示表格
    图  2  拉伸试样的具体尺寸 (mm)
    Figure  2.  The size of the tensile sample

    为实现同侧双丝在电弧的加热作用下同步熔化,且能够均匀过渡到熔池继而凝固,文中工艺中采用了同侧上下不同角度的送丝位置. 其中两送丝位置分别与基板成60°和30°的角度,电弧稳定后同时送进两根丝材. 虽然两根送进丝材均为铝合金丝材,但是其工艺性能和熔化时物性明显不同. 其中Al-Mg-Sc丝材的焊接工艺性能良好,Al-Zn-Mg-Cu丝材的焊接工艺性较差,因而不同送进丝材采用不同的送进位置会对沉积过程产生较大影响,故采用分别在不同位置送进丝材并交换位置,以获得不同送丝条件下的熔化凝固情况,最终确定两根丝材送进的位置.

    单丝送进时,7系铝合金丝材在上方送丝位置过渡情况不佳,而在下方送丝位置呈现顺利的熔化凝固过程,而含Sc的Al6Mg丝材工艺性能十分良好,具有良好的流动性,其在靠近焊枪或靠近基板的送丝位置均有良好的工艺表现. 7系铝合金丝材从上方送丝送进时会受到提前加热,呈现十分粘稠的质地且丝材到熔池的距离较远,无法实现良好过渡,易于堆积在送丝嘴处. 随后,采用两根丝材同时送进的方式,分别对于两根丝材在不同送丝位置进行试验,如图3所示. 其中上方1号沉积层是Al-Zn-Mg-Cu丝材在靠近热源的位置,Al-Mg-Sc丝材在靠近板材的位置,2号反之.

    图  3  不同送丝位置情况下的成形情况
    Figure  3.  Forming under different wire feeding positions

    可明显看出图3中1号沉积层以成形,在平台行走过程中,受热源加热的两根丝材熔化后聚集在一起,易汇聚形成较大液态金属球(图4). 随着丝材送进逐渐增大,难以过渡进入金属熔池,凝固后呈现滴状铝合金球,难以实现送进丝材的沉积成形.

    图  4  不良的双丝过渡情况
    Figure  4.  Poor weld drop transition conditions

    图3中2号沉积层是交换送丝位置后的沉积情况,成形良好,两根丝材在受到加热之后,自然平缓过渡,能够在既定运动位置上稳定成形,且表面较为光亮,边缘较为整齐. 因此,结合两根丝材的不同送丝表现,在双丝电弧增材制造含Sc的7系铝合金时,7系铝合金丝材采用靠近基板的送丝位送进,含Sc的Al6Mg丝材采用靠近焊枪的送丝位送进.

    此外,在双丝电弧增材过程中,两根同时送进的铝合金丝材会存在一定的相互作用,对于不同送丝位置送进的丝材,其熔化前后的物性相差较大,当丝材送进过快时,会导致未完全熔化,丝材送进过慢时会导致丝材熔化后表面张力较小呈现黏度较低的质地,流动性过大,亦不利于铝合金的沉积过程. 因此设计了送丝速度配合工艺试验,确定了含Sc的铝合金丝材和7系铝合金丝材的送丝速度区间,试验结果如图5所示.

    图  5  不同送丝速度下的成形情况
    Figure  5.  Forming under different wire feeding speeds

    最终确定的送丝区间为单送丝位置为600 mm/min至1000 mm/min. 稳定沉积效率两根铝合金丝材的总送丝速度为1600 mm/min.

    利用电弧作为铝合金增材制造的热源,除了增材效率高,设备简单等优势外,其能够实现阴极清理铝合金表面氧化膜的特性亦是其重要优势. 为了综合铝合金氧化膜的阴极清理的作用以及能量转化情况,采用极性周期可变的变极性电弧策略. 因此探明双丝电弧增材过程中的变极性参数对于试验的影响十分重要.

    变极性参数一般包括正负半波的占比以及变极性频率. 首先是正负半波的占比,当负半波占比过大时,会造成电弧的钨极产生烧损,而正半波占比过大时,也会发生阴极清理效果差的情况,经过单因素试验,综合钨极烧损和阴极清理作用情况,综合选用EN/EP比为7∶3,此时的阴极清理效果较好,且钨极烧损情况较小. 随后采用不同参数分别制备了不同变极性频率的双丝铝合金电弧增材试样,并对其进行观察.

    首先是在不同的变极性频率下的孔隙情况,对于采用不同变极性频率制备的铝合金沉积试样进行分析,如图6所示.

    图  6  不同变极性频率下的组织截面
    Figure  6.  Cross-section at different variable polarity frequencies

    由宏观组织图可明显看出,孔隙的数量随着电弧变极性频率的增加呈现出先减少后增加的变化趋势. 其中在电弧的变极性频率为100 Hz和150 Hz时,截面上的可见孔隙较少,进一步通过图片计算孔隙尺寸,得到大致的孔隙分布趋势如图7所示. 结合孔隙分布情况,应采用电弧的变极性频率为100 Hz或150 Hz.

    图  7  不同变极性频率下的孔隙占比变化
    Figure  7.  Variation of pore area percentage at different variable polarity frequencies

    图8展示了不同频率下的宏观成形情况,在不同的变极性频率下,可看到各试样的宏观样貌具有明显不同. 首先观察表面洁净情况以及周围阴极清理的效果,随着变极性频率的增加,沉积层表面愈发光亮,并且在表面有明显的鱼鳞纹形状.

    图  8  不同变极性频率下的宏观形貌
    Figure  8.  Macrostructure at different variable polarity frequencies

    整体的成形随着频率的增加,成形愈发稳定,成形更加顺畅美观. 在较低的变极性频率时虽然也具有良好成形,但是如在100 Hz以及50 Hz时的情况,很容易形成球状,影响后续沉积.

    由于电弧在极性变化过程中,会发生明显的变化,电弧的形态会受到变极性频率的影响. 双丝电弧增材过程中电弧稳定性与熔滴过渡之间存在密切关系. 图9展示了不同变极性频率下双丝电弧增材过程中的电弧形态. 当电弧在50 Hz时,在电弧进行移动时,会出一定的偏移现象,而当电弧的变极性频率高于200 Hz时,电弧无偏移情况,刚度较好. 能量较为集中,但此时电弧过于收束,双丝在电弧处交汇易产生不良过渡情况. 因此在双丝电弧增材制备铝合金中应该选用100 ~ 150 Hz的变极性频率. 尽管双丝电弧增材工艺中变极性频率的增加会增加电弧的挺度,并且使得电弧挺度增强,产生较大的电弧压力,促进熔滴过渡,但是过于收束的电弧会使两根高速不断送进的丝材熔化不完全,发生相互干涉,难以进行沉积.

    图  9  不同变极性频率下的电弧形态
    Figure  9.  Shape of arc at different variable polarity frequencies

    选用不同的热源扫描速度,分别为100 mm/min,200 mm/min和300 mm/min,其他条件不变进行试验. 观察扫描速度为100 mm/min时,Al-Mg-Zn-Cu-Sc合金的组织基本特点,如图10所示.

    图  10  双丝电弧增材制备的Al-Mg-Zn-Cu-Sc合金微观组织
    Figure  10.  Microstructure of Al-Mg-Zn-Cu-Sc alloy prepared by dual wire arc additive manufacturing. (a) the microstructure of Al-Mg-Zn-Cu-Sc; (b) eutectic second phase in grains boundaries; (c) distribution of Al3Sc particles

    从微观组织可观察到在沉积态Al-Mg-Zn-Cu-Sc合金的晶界上分布有大量银白色衬度的共晶组织,由基体和第二相构成,主要分布在晶界上,并且晶粒内部也有一定分布. 在放大倍数较高时,可以观察到Al3Sc相的存在,均匀分布在基体中,说明Sc元素在该合金中主要以第二相的形式存在. 该相呈现与基体共格的特征. 纳米尺度Al3Sc相说明了双丝电弧增材技术引入Sc可以从弥散强化的角度进一步提升力学性能. 成形尺寸方面,在送丝速度不变的情况下,随着热源扫描速度的增加,沉积层宽度明显减小,沉积成形得到的薄壁厚度变小,从1.5 cm减小至0.9 cm表面趋于光滑.

    在送丝速度不变的情况下,随着热源扫描速度的增加,单位时间内的熔覆丝材减少,形成的熔池较小,在较快的散热条件下,熔池凝固较快,较小的熔池凝固后形成的沉积层较窄,并且由于熔池处于高温的时间较短,在其凝固的过程中由于铺展时间较短,表面张力较大,无法较好的润湿此前凝固的表面,使得侧面出现不同程度的成形缺陷.

    相同工艺参数下不含Sc元素的7055铝合金与不同扫描速度下的双丝电弧增材制备Al-Mg-Zn-Cu-Sc合金的力学性能如图11所示,与沉积态7055铝合金相比,后者抗拉强度、断后伸长率均有一定程度提高,抗拉强度提升30%,断后伸长率平均提高40%,但是不同扫描速度下的拉伸性能差别不大,抗拉强度都在300 MPa左右,断后伸长率也都在达到5%以上. 这种现象出现的原因是沉积态下的Al-Zn-Mg-Cu合金在引入Sc的情况下仍然在晶间富集第二相,容易发生断裂. 同时在不同扫描速度下,影响拉伸性能的大尺寸缺陷并不存在,因此说明扫描速度参数对于沉积态的力学性能影响较小,主要影响成形和沉积速率等情况. 因此,在工艺区间内的扫描速度的变化在双丝电弧增材制造Al-Mg-Zn-Cu-Sc合金过程中对于力学性能的影响不大. 为进一步研究不同的扫描速度影响的组织变化,探究力学性能变化不大的原因,将进一步对于不同扫描速度下的制备沉积态Al-Mg-Zn-Cu-Sc合金的微观组织进行观察.

    图  11  不同扫描速度下的力学性能
    Figure  11.  Mechanical properties at different scanning speeds

    常规增材制造中为控制成形,扫描速度为恒定值. 对于电弧增材过程,在不同的扫描速度下的产热过程和散热过程都会发生变化,同时对于工艺开发尚不明确的铝合金双丝电弧增材技术,由于铝合金散热较快,熔化后的熔池流动情况发生变化,凝固后的沉积态组织会受到热变化的影响从而在不同的扫描速度下对应出不同的组织情况. 不同扫描速度下获得的沉积样品微观组织如图12所示.

    图  12  不同扫描速度下的微观组织
    Figure  12.  Microstructures at different scanning speeds. (a) 100 mm/min; (b) 200 mm/min; (c) 300 mm/min

    随着扫描速度的增加,组织中的柱状晶的纵向生长程度减少,并且晶粒平均尺寸有所减小,但是差距不大. 这是由于扫描速度增加时,单位时间熔覆的金属量减少,熔池的尺寸减小,散热条件发生变化. 虽然扫描速度的增加使得熔池凝固速度进一步加快,但是由于散热和产热之间的差距变化不大,并未出现有利于等轴晶产生的散热条件,因此组织仍然呈现大量柱状晶的特征. 与组织发生较小的变化相对应,不同扫描速度下的力学性能变化较小.

    进一步观察拉伸试验断口,如图13所示. 不同扫描速度下的断口截面展示大致相同的断裂情况,进一步对应上述的组织特点,断口的断裂形式大多为由缺陷处开裂,并持续扩展,最终全部断裂. 其中断口处主要呈现沿晶断裂,从端口处的衬度可知,沿晶断裂的原因是晶界处存在脆性的第二相,在受到应力时会率先开裂. 断口处可见大量小尺寸韧窝,这些尺寸较小的韧窝反映了试样相对较低的塑性. 并且从断口界面可见,组织内部存在一定的气孔,成为断裂的裂纹源.

    图  13  拉伸断口的表面
    Figure  13.  The fracture surface of the tensile tested sample. (a) characteristics of fracture; (b) the microstructure of fracture surfaces; (c) dimples in the fracture surface

    (1) 采用双丝电弧增材系统,进行电弧增材制造7系铝合金过程中的Sc合金化,实现了沉积态Al-Mg-Zn-Cu-Sc铝合金制备,通过不同送丝位置和送丝速度的对比试验,确认每根丝的送丝速度在600 mm/min到1000 mm/min范围内均可良好成形.

    (2) 随着变极性频率的增加,组织内部的气孔含量呈现先减少后增加的趋势,组织在100 Hz到150 Hz之间达到气孔率小于0.1%的程度,且此时电弧稳定性较高,可以稳定实现双丝电弧增材制备过程.

    (3) Sc元素以Al3Sc相的形式存在于基体中. 随着扫描速度的增加,柱状晶的生长趋势在一定程度上被限制,单层沉积高度增加和沉积层宽度减小,力学性能变化不大.

  • 图  1   C4凸点与CPB对比[6,7]

    Figure  1.   SEM image and schematic diagram of C4 bumps and CPB. (a) C4 bumps;(b) copper pillar bumps

    图  2   电镀CPB的步骤

    Figure  2.   The steps of electroplating CPB.

    图  3   不同电流密度下凸点形貌对比[34]

    Figure  3.   Comparison of bump morphology at different current densities.

    图  4   热循环下不同失效模式[39-41]

    Figure  4.   Different failure modes under thermal cycling. (a) excessive strain caused by thermal stress; (b) low -k layer germinating cracks; (c) metal fatigue

    图  5   不同形状铜柱凸点对应力分布影响[44]

    Figure  5.   The influence of different CPB types on stress characteristics. (a) plate type; (b) pin type; (c) conical frustum type; (d) skirt type; (e) zigzag type; (f) equivalent stress characteristics

    图  6   底部填充对于铜柱凸点影响[55]

    Figure  6.   The influence of underfill on CPB (a) without underfill; (b) with underfill

    图  7   不同凸点的电迁移性能比较 (145°C,700mA)[67]

    Figure  7.   Comparison of different bumps EM performance.

    图  8   铜柱凸点的断裂模式 (197°C , 29. 8 kA cm−2) [69]

    Figure  8.   SEM images of the CPB with a current density of 29. 8 kA cm−2 at 197 °C. (a)500h; (b) 870h

    图  9   不同形状凸点的电迁移微观图像[68]

    Figure  9.   SEM images of different shapes under electromigration test. (a) hourglass-shaped; (b) cylinder-shaped, (c) barrel-shaped

    图  10   铜柱凸点在电流作用下的微观结构(197°C , 29. 8 kA cm−2 ,600 h) [76]

    Figure  10.   Microstructure of CPB after current stressing at 1. 5 × 104 A/cm2 at 125 °C for 600 h. (a) SEM image; (b) EBSD image

    表  1   C4凸点和CPB的比较

    Table  1   Comparison between C4 bump and CPB

    性能对比C4凸点铜柱凸点
    电阻率(μΩ m)0.12-0.140.0172
    热导率(μΩ m)55-60400
    屈服强度
    凸点节距(μm)50-20020-150
    凸点高度(μm)50-7030-80
    制备难度容易复杂
    结构设计固定灵活
    I/O密度
    自对准效应
    下载: 导出CSV

    表  2   电镀CPB方法对比

    Table  2   Comparison of electroplating CPB methods

    基础镀液Cl-抑制剂加速剂整平剂电流密度特点参考文献
    0.40 mol/L CuSO4
    1.80 mol/L H2SO4
    60 ppm20mg/L EO/PO0.7mg/L
    SPS
    --18∼20 mA/cm2通过提高Cl-浓度,加快了铜离子的还原反应,形成了致密的铜结构[26]
    0.26 M CuSO4
    2 M H2SO4
    1.13 mM0. 02mM
    PEG
    0.01 mM
    SPS
    --20 mA/cm2同时使用PEG和SPS可以很好降低沉积铜的间隙[27]
    0.6MCuSO4·5H2O
    1.2 M H2SO4
    60 ppm600ppm
    PEG
    9 ppm
    SPS
    --5 A/dm2该浓度下PEG和SPS可以获得具有细小晶粒的铜层且铜柱光洁性好[28]
    0.88MCuSO4·5H2O
    0.54 M H2SO4
    50 ppm200ppm
    PEG-branch
    1 ppm
    SPS
    --30 mA/cm2PEG-Branch具有较强的抑制能力,使得铜柱表面呈现平整度较高的外凸型[29]
    200 g/L CuSO4⋅5H2O
    50 g/L H2SO4
    60 ppm200ppm
    PEG
    5 ppm
    SPS
    mST2 A/dm2PEG-mST-SPS体系所需的电镀效率高于PEG-JGB-SPS体系[30]
    140 g/L H2SO4
    120 g/L CuSO4⋅5H2O
    50 mg/L100ppm
    PEG
    8 ppm
    SPS
    Kunyuan
    Chemical
    3∼7 A/dm2整平剂沉积速率快,同时,在大电流密度下,铜柱表面平整度最好[31]
    下载: 导出CSV

    表  3   不同表面处理后CPB热循环可靠性分析

    Table  3   the influence of different surface finishes on the thermal reliability of CPB

    表面处理
    方法
    温度循环
    试验
    高温蒸煮
    试验
    高温储存
    试验
    温度冲击
    试验
    ENIG失效较差失效良好
    Sn良好良好优秀非常优秀
    Sn/Ag较差良好失效较差
    OSP良好非常优秀失效非常优秀
    下载: 导出CSV
  • [1]

    Kikuchi K. 3D-IC Technology for Contribution to the IoT Society[J]. J. Japan Inst. Electron. Packag, 2019, 22(6): 501 − 506. doi: 10.5104/jiep.22.501

    [2]

    Waldrop M M. More than moore[J]. Nature, 2016, 530(7589): 144 − 148. doi: 10.1038/530144a

    [3]

    Nah J W, Suh J O, Tu K N, et al. Electromigration in flip chip solder joints having a thick Cu column bump and a shallow solder interconnect[J]. Journal of applied physics, 2006, 100(12).

    [4]

    Tu K N, Tu K N. Electromigration in Flip Chip Solder Joints[J]. Solder Joint Technology: Materials, Properties, and Reliability, 2007: 245-288.

    [5]

    Lee S, Guo Y X, Ong C K. Electromigration effect on Cu-pillar (Sn) bumps[C]//2005 7th Electronic Packaging Technology Conference. IEEE, 2005, 1: 5 pp.

    [6]

    Tsai W S, Huang C Y, Chung C K, et al. Generational changes of flip chip interconnection technology[C]//2017 12th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). IEEE, 2017: 306-310.

    [7]

    Huang M, Yeow O G, Poo C Y, et al. A study on copper pillar interconnect in flip-chip-on-module packaging[C]//2007 9th Electronics Packaging Technology Conference. IEEE, 2007: 325-330.

    [8]

    Flack W W, Nguyen H A, Capsuto E, et al. Characterization of a thick copper pillar bump process[C]//2007 12th International Symposium on Advanced Packaging Materials: Processes, Properties, and Interfaces. IEEE, 2007: 208-213.

    [9]

    Garnier A, Arnaud L, Franiatte R, et al. Electrical performance of high density 10 µm diameter 20 µm pitch Cu-pillar with chip to wafer assembly[C]//2017 IEEE 67th Electronic Components and Technology Conference (ECTC). IEEE, 2017: 999-1007.

    [10]

    Tummala R R, Raj P M, Aggarwal A, et al. Copper interconnections for high performance and fine pitch flip chip digital applications and ultra-miniaturized RF module applications[C]//56th Electronic Components and Technology Conference 2006. IEEE, 2006: 10 pp.

    [11]

    Yu J, Anand A, Mui Y C, et al. Reliability study on copper pillar bumping with lead free solder[C]//2007 9th Electronics Packaging Technology Conference. IEEE, 2007: 618-622.

    [12]

    Baliga J. Copper now a pillar of high-end packaging[J]. Semiconductor International, 2006.

    [13]

    Chau D S, Gupta A, Chiu C P, et al. Impact of different flip-chip bump materials on bump temperature rise and package reliability[C]//Proceedings. International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2005. IEEE, 2005: 90-93.

    [14]

    Nicholls L, Darveaux R, Syed A, et al. Comparative electromigration performance of Pb Free flip chip joints with varying board surface condition[C]//2009 59th Electronic Components and Technology Conference. IEEE, 2009: 914-921.

    [15]

    Nah J W, Suh J O, Tu K N, et al. Electromigration in Pb-free solder bumps with Cu column as flip chip joints[C]//56th Electronic Components and Technology Conference 2006. IEEE, 2006: 6 pp.

    [16]

    Koh W, Lin B, Tai J. Copper pillar bump technology progress overview[C]//2011 12th International Conference on Electronic Packaging Technology and High Density Packaging. IEEE, 2011: 1-5.

    [17]

    Lau J H. Recent advances and new trends in flip chip technology[J]. Journal of Electronic Packaging, 2016, 138(3): 030802. doi: 10.1115/1.4034037

    [18]

    Lu D, Wong C P. Materials for advanced packaging[M] . 2nd ed. Springer International Publishing, 2016.

    [19]

    Datta M. Manufacturing processes for fabrication of flip-chip micro-bumps used in microelectronic packaging: An overview[J]. Journal of Micromanufacturing, 2020, 3(1): 69 − 83. doi: 10.1177/2516598419880124

    [20]

    Dudderar T D, Degani Y, Spadafora J G, et al. AT&T spl mu/Surface Mount Assembly: A New Technology for the Large Volume Fabrication of Cost Effective Flip-Chip MCMs[C]//Proceedings of the International Conference on Multichip Modules. IEEE, 1994: 266-272.

    [21]

    Töpper M, Lu D. Bumping technologies[M]//Advanced Flip Chip Packaging. Boston, MA: Springer US, 2013: 53-84.

    [22] 王美玉, 梅云辉, 李欣. 无压烧结银与化学镀镍(磷)和电镀镍基板的界面互连研究[J]. 机械工程学报, 2022, 58(2): 159 − 165.

    WANG Meiyu, MEI Yunhui, LI Xin. Study on Interfacial Bonding between Pressureless Sintered Silver with Electroless-plated Nickel(Phosphorus) and Electro-plated Nickel Metallization[J]. Journal of Mechanical Engineering, 2022, 58(2): 159 − 165.

    [23]

    Morey A M, Popelar S, Hook J. An Investigation into Thermomigration Failure of Flip Chip Solder Joint Interconnects Used in High-Reliability Applications[J]. Journal of Microelectronics and Electronic Packaging, 2022, 19(2): 77 − 82. doi: 10.4071/imaps.1717945

    [24]

    Kamata T, Kato D, Ida H, et al. Structure and electrochemical characterization of carbon films formed by unbalanced magnetron (UBM) sputtering method[J]. Diamond and related materials, 2014, 49: 25 − 32. doi: 10.1016/j.diamond.2014.07.007

    [25]

    JIN L, YANG J, YANG F, et al. Research progresses of copper interconnection in chips[J]. Journal of Electrochemistry, 2020, 26(4): 11.

    [26]

    Chen Y, He W, Chen X, et al. Plating uniformity of bottom-up copper pillars and patterns for IC substrates with additive-assisted electrodeposition[J]. Electrochimica Acta, 2014, 120: 293 − 301. doi: 10.1016/j.electacta.2013.12.112

    [27]

    Yin L, Wafula F, Dimitrov N, et al. Toward a better understanding of the effect of Cu electroplating process parameters on Cu 3 Sn voiding[J]. Journal of electronic materials, 2012, 41: 302 − 312. doi: 10.1007/s11664-011-1764-0

    [28]

    Li L L, Yang C J. Size control of copper grains by optimization of additives to achieve flat-top copper pillars through electroplating[J]. Journal of The Electrochemical Society, 2017, 164(6): D315. doi: 10.1149/2.1251706jes

    [29]

    Li L L, Yeh H C. Effect of the functional group of polyethylene glycol on the characteristics of copper pillars obtained by electroplating[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(11): 14358 − 14367.

    [30]

    Zhu H P, Zhu Q S, Zhang X, et al. Microvia filling by copper electroplating using a modified safranine T as a leveler[J]. Journal of The Electrochemical Society, 2017, 164(9): D645. doi: 10.1149/2.0111712jes

    [31]

    Zhu Q S, Ding Z F, Wei X F, et al. Effect of leveler on performance and reliability of copper pillar bumps in wafer electroplating under large current density[J]. Microelectronics Reliability, 2023, 146: 115030. doi: 10.1016/j.microrel.2023.115030

    [32]

    Tan B Z, Liang J L, Lai Z L, et al. Electrochemical Deposition of Copper Pillar Bumps with High Uniformity[J]. Journal of Electrochemistry, 2022, 28(7): 7.

    [33]

    Yung K C, Yue T M, Chan K C, et al. The effects of pulse plating parameters on copper plating distribution of microvia in PCB manufacture[J]. IEEE transactions on electronics packaging manufacturing, 2003, 26(2): 106 − 109. doi: 10.1109/TEPM.2003.817722

    [34]

    Luo V, Xue X T, Yu K C, et al. Method to improve the process efficiency for copper pillar electroplating[J]. Journal of The Electrochemical Society, 2015, 163(3): E39.

    [35] 申兵伟, 徐明玥, 杨尚荣, 等. 焊接时间及焊接温度对Sn35Bi0.3Ag/Cu焊接接头性能的影响[J]. 焊接学报, 2023, 44(3): 77 − 86.

    SHEN Bingwei, XU Mingyue, YANG Shangrong, LIU Guohua, XIE Ming, DUAN Yunzhao. Effect of welding time and temperature on properties of Sn35Bi0.3Ag/Cu welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 77 − 86.

    [36]

    Yin L, Kondos P, Borgesen P, et al. Controlling Cu electroplating to prevent sporadic voiding in Cu 3 Sn[C]//2009 59th Electronic Components and Technology Conference. IEEE, 2009: 406-414.

    [37]

    Xu T, Hu X, Li Y, et al. The growth behavior of interfacial intermetallic compound between Sn–3.5 Ag–0.5 Cu solder and Cu substrate under different thermal-aged conditions[J]. Journal of Materials Science: Materials in Electronics, 2017, 28: 18515 − 18528.

    [38]

    Zhao W, Rao L, Hu A, et al. Research on the reliability of Cu/Sn copper pillar bump[C]//2017 18th International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2017: 946-949.

    [39]

    Ratchev P, Vandevelde B, De Wolf I. Reliability and failure analysis of Sn-Ag-Cu solder interconnections for PSGA packages on Ni/Au surface finish[J]. IEEE Transactions on Device and Materials Reliability, 2004, 4(1): 5 − 10. doi: 10.1109/TDMR.2003.822341

    [40]

    Chen X, Cheng J, Wu H, et al. Open failure mechanisms of FCBGA package under temperature cycling stress[C]//2017 IEEE 24th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). IEEE, 2017: 1-4.

    [41]

    Alberti R, Vaion R E, Mervic A, et al. Metal fatigue in copper pillar flip chip BGA: A refined acceleration model for the aluminium pad cracking failure mechanism[J]. Microelectronics Reliability, 2015, 55(9-10): 1838 − 1842. doi: 10.1016/j.microrel.2015.06.150

    [42]

    Tian Y, Liu X, Chow J, et al. Experimental evaluation of SnAgCu solder joint reliability in 100-μm pitch flip-chip assemblies[J]. Microelectronics Reliability, 2014,

    [43]

    Pang J H L, Wong S C K, Neo S K, et al. Thermal cycling fatigue analysis of copper pillar-to-solder joint reliability[C]//2008 2nd Electronics System-Integration Technology Conference. IEEE, 2008: 743-748

    [44]

    Park S M, Bang H S, Bang H S, et al. Thermo-mechanical analysis of TSV and solder interconnects for different Cu pillar bump types[J]. Microelectronic engineering, 2012, 99: 38 − 42. doi: 10.1016/j.mee.2012.05.056

    [45]

    Sun H, Gao B, Zhao J. Thermal-mechanical reliability analysis of WLP with fine-pitch copper post bumps[J]. Soldering & Surface Mount Technology, 2021, 33(3): 178 − 186.

    [46]

    Yoon J W, Moon W C, Jung S B. Interfacial reaction of ENIG/Sn-Ag-Cu/ENIG sandwich solder joint during isothermal aging[J]. Microelectronic engineering, 2006, 83(11-12): 2329 − 2334. doi: 10.1016/j.mee.2006.10.027

    [47]

    Liu B, Tian Y, Liu W, et al. TEM observation of interfacial compounds of SnAgCu/ENIG solder bump after laser soldering and subsequent hot air reflows[J]. Materials Letters, 2016, 163: 254 − 257. doi: 10.1016/j.matlet.2015.10.108

    [48]

    Accogli A, Gibertini E, Panzeri G, et al. Understanding the failure mode of electroless nickel immersion gold process: in situ-Raman spectroscopy and electrochemical characterization[J]. Journal of The Electrochemical Society, 2020, 167(8): 082507. doi: 10.1149/1945-7111/ab8ce6

    [49]

    Arazna A, Krolikowski A, Koziol G, et al. The corrosion characteristics and solderability of immersion tin coatings on copper[J]. Materials and Corrosion, 2013, 64(10): 914 − 925. doi: 10.1002/maco.201106434

    [50]

    Delhaise A M, Bagheri Z, Meschter S, et al. Tin whisker growth on electronic assemblies soldered with Bi-containing, Pb-free alloys[J]. Journal of Electronic Materials, 2021, 50(3): 842 − 854. doi: 10.1007/s11664-020-08544-6

    [51]

    Amli S F M, Salleh M A A M, Ramli M I I, et al. Effects of immersion silver (ImAg) and immersion tin (ImSn) surface finish on the microstructure and joint strength of Sn-3.0 Ag-0.5 Cu solder[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(17): 14249 − 14263. doi: 10.1007/s10854-022-08353-z

    [52]

    Huang M, Yeow O G, Poo C Y, et al. Intermetallic formation of copper pillar with Sn–Ag–Cu for flip-chip-on-module packaging[J]. IEEE Transactions on Components and Packaging Technologies, 2008, 31(4): 767 − 775. doi: 10.1109/TCAPT.2008.2001194

    [53]

    Afripin A, Carpenter B, Hauck T. Finite element analysis of copper pillar interconnect stress of flip-chip chip-scale package[C]//2021 22nd International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE). IEEE, 2021: 1-5.

    [54]

    Ning W, Zhu C, Li H, et al. Optimal design toward enhancement of thermomechanical reliability of polyimide layers in a flip-chip-on-lead-frame dual flat no-leads package with copper pillar bumps[J]. Materials science in semiconductor processing, 2013, 16(3): 933 − 939. doi: 10.1016/j.mssp.2013.01.023

    [55]

    Li J, Zhang Y, Zhang H, et al. The thermal cycling reliability of copper pillar solder bump in flip chip via thermal compression bonding[J]. Microelectronics Reliability, 2020, 104: 113543. doi: 10.1016/j.microrel.2019.113543

    [56]

    Meinshausen L, Weide-Zaage K, Frémont H. Electro-and thermo-migration induced failure mechanisms in Package on Package[J]. Microelectronics Reliability, 2012, 52(12): 2889 − 2906. doi: 10.1016/j.microrel.2012.06.115

    [57]

    Chu L, Shi J, Braun R. The impacts of material uncertainty in electro-migration of SAC solder electronic packaging by monte carlo-based stochastic finite-element model[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(11): 1864 − 1876.

    [58] 李雪梅, 孙凤莲, 张浩, 辛瞳. 微焊点Cu/SAC305/Cu固-液界面反应及电迁移行为[J]. 焊接学报, 2016, 37(9): 61 − 64.

    LI Xuemei, SUN Fenglian, ZHANG Hao, XIN Tong. Micro-solder joints Cu/SAC305/Cu solid-liquid interfacial reaction and electromigration behavior[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 61 − 64.

    [59]

    Wu J D, Zheng P J, Lee C W, et al. A study in flip-chip UBM/bump reliability with effects of SnPb solder composition[C]//2003 IEEE International Reliability Physics Symposium Proceedings, 2003. 41st Annual. IEEE, 2003: 132-139.

    [60]

    Lin Y H, Hu Y C, Tsai C M, et al. In situ observation of the void formation-and-propagation mechanism in solder joints under current-stressing[J]. Acta materialia, 2005, 53(7): 2029 − 2035.

    [61]

    Liang Y C, Tsao W A, Chen C, et al. Influence of Cu column under-bump-metallizations on current crowding and Joule heating effects of electromigration in flip-chip solder joints[J]. Journal of Applied Physics, 2012, 111(4).

    [62]

    Orii Y, Toriyama K, Kohara S, et al. Effect of preformed Cu-Sn IMCs layer on electromigration reliability of solder capped Cu pillar bump interconnection on an organic substrate[C]//2012 2nd IEEE CPMT Symposium Japan. IEEE, 2012: 1-4.

    [63]

    Ebersberger B, Bauer R, Alexa L. Reliability of lead-free SnAg solder bumps: influence of electromigration and temperature[C]//Proceedings Electronic Components and Technology, 2005. ECTC'05. IEEE, 2005: 1407-1415.

    [64]

    Ebersberger B, Lee C. Cu pillar bumps as a lead-free drop-in replacement for solder-bumped, flip-chip interconnects[C]//2008 58th Electronic Components and Technology Conference. IEEE, 2008: 59-66.

    [65]

    Syed A, Dhandapani K, Moody R, et al. Cu Pillar and μ-bump electromigration reliability and comparison with high pb, SnPb, and SnAg bumps[C]//2011 IEEE 61st Electronic Components and Technology Conference (ECTC). IEEE, 2011: 332-339.

    [66]

    Lai Y S, Chiu Y T, Chen J. Electromigration reliability and morphologies of Cu pillar flip-chip solder joints with Cu substrate pad metallization[J]. Journal of Electronic Materials, 2008, 37: 1624 − 1630. doi: 10.1007/s11664-008-0515-3

    [67]

    Chen M Y, Liang Y C. Electromigration in reduced-height solder joints with Cu pillars[J]. Journal of Materials Science Materials in Electronics, 2016, 27(4): 3715 − 3722. doi: 10.1007/s10854-015-4213-7

    [68]

    Zhang H, Li J, Zhu W. Electromigration in flip chip with Cu pillar having a shallow Sn-3.5 Ag solder interconnect[C]//2018 19th International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2018: 1653-1656.

    [69]

    Ma H C, Guo J D, Chen J Q, et al. Reliability and failure mechanism of copper pillar joints under current stressing[J]. Journal of Materials Science: Materials in Electronics, 2015, 26: 7690 − 7697.

    [70]

    Hsiao Y H, Chen C F, Yang P F, et al. The physics of Cu pillar bump interconnect under electromigration stress testing[C]//Proceedings of the 5th Electronics System-integration Technology Conference (ESTC). IEEE, 2014: 1-6.

    [71]

    Akiba T, Funaya T, Sakata K, et al. Electromigration mechanism on interconnected Cu pillar in flip chip package[C]//2017 IEEE CPMT Symposium Japan (ICSJ). IEEE, 2017: 1-4.

    [72]

    Liu P, Overson A, Goyal D. Key parameters for fast Ni dissolution during electromigration of Sn0. 7Cu solder joint[C]//2015 IEEE 65th Electronic Components and Technology Conference (ECTC). IEEE, 2015: 99-105.

    [73]

    Hsiao Y H, Lin K L, Lee C W, et al. Study of electromigration-induced failures on Cu pillar bumps joined to OSP and ENEPIG substrates[J]. Journal of electronic materials, 2012, 41: 3368 − 3374. doi: 10.1007/s11664-012-2293-1

    [74]

    Fan Z, Li Z, Li J, et al. Effect of bump shapes on the electromigration reliability of copper pillar solder joints[C]//2021 22nd International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2021: 1-6.

    [75]

    Kuan W C, Liang S W, Chen C. Effect of bump size on current density and temperature distributions in flip-chip solder joints[J]. Microelectronics Reliability, 2009, 49(5): 544 − 550. doi: 10.1016/j.microrel.2009.03.001

    [76]

    Xu K, Fu X, Wang X, et al. The effect of grain orientation of β-Sn on Copper pillar solder joints during electromigration[J]. Materials, 2022, 15(1): 108.

    [77]

    Xu J L, Lu X J, Fu Z W, et al. Research on Electromigration Behavior of Cu Pillar Bumps under Pulse Current Stress[C]//2021 22nd International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2021: 1-4.

    [78]

    Fu Z, Chen J, Zhao P, et al. Interfacial Reaction and Electromigration Failure of Cu Pillar/Ni/Sn-Ag/Cu Microbumps under Bidirectional Current Stressing[J]. Materials, 2023, 16(3): 1134.

  • 期刊类型引用(21)

    1. 张香云,雷朱坦,耿家源,刘刚. AZ31/LA141搅拌摩擦搭接焊工艺及性能研究. 兵器材料科学与工程. 2024(02): 24-29 . 百度学术
    2. 韩政,蒋少松,李升,吴洁璇. LZ91镁锂合金四层中空结构件连接工艺. 锻压技术. 2024(05): 135-141 . 百度学术
    3. 赵玉军. 加工速度对AZ31镁合金搅拌摩擦加工组织和力学性能的影响. 南阳理工学院学报. 2024(04): 120-124 . 百度学术
    4. 宋文杰,贺帅,沈奇江,吴宗育. LA141镁锂合金搅拌摩擦焊接过程温度场模拟. 陕西科技大学学报. 2023(01): 117-122 . 百度学术
    5. 雷朱坦,武冰冰,王津,耿家源,刘刚. AZ31/LA141搅拌摩擦搭接焊接头的组织与力学性能. 航空制造技术. 2023(08): 117-123 . 百度学术
    6. 夏聪聪,马立彩,鲁传洋,王锋,唐佳奇. LA103W镁锂合金TIG焊接接头组织与性能研究. 航天制造技术. 2023(05): 50-53 . 百度学术
    7. 刘沁钰,周利,戎校宇,杨海峰,赵洪运. 镁锂合金焊接技术研究现状. 材料导报. 2022(10): 150-159 . 百度学术
    8. 沙春生,张成聪,张毅,黄婉如. MLZ91镁锂合金激光焊接接头的显微组织与力学性能. 热加工工艺. 2022(13): 57-60 . 百度学术
    9. 刘刚,张玺,武冰冰,解芳,马振铎. 旋转速度对LZ91镁锂合金搅拌摩擦加工改性的影响. 热加工工艺. 2022(16): 18-21 . 百度学术
    10. 刘兰波,李源,柴艳红,刘娜,毛喆,陈敏豪. 镁锂合金制造工艺技术研究及应用现状. 航天制造技术. 2022(05): 74-78 . 百度学术
    11. 刘刚,方诚,朱磊,黄青娜,解芳. 正交试验法优化超轻LA141镁锂合金表面植酸处理工艺研究. 河北科技大学学报. 2022(06): 571-578 . 百度学术
    12. 姜炳春,付琴,胡少华,唐联耀,刘方方. LZ92镁锂合金激光焊接接头的显微组织与力学性能. 机械工程材料. 2021(01): 46-49 . 百度学术
    13. 肖雪,刘怀海,耿家源,刘刚. 挤压态Mg-9Li-xAl-0.6Y合金组织与力学性能研究. 有色金属工程. 2021(04): 1-7 . 百度学术
    14. 张菊梅,段鑫,王凯,张阳,蔡辉. 水热反应温度对LA103Z镁锂合金表面MAO/LDH复合膜层微观组织及耐蚀性的影响. 表面技术. 2021(05): 261-268+280 . 百度学术
    15. 刘刚,秦丽霞,张玺,彭银利,耿家源. LZ91镁锂合金搅拌摩擦加工的组织与力学性能. 热加工工艺. 2021(18): 56-60 . 百度学术
    16. 宋奎晶,董志波,李洋,李冬梅,朱帅,吕磊,罗俊睿. 镁锂合金搅拌摩擦焊及电子束焊研究. 电子机械工程. 2020(01): 46-50 . 百度学术
    17. 江雯,蒋璐瑶,黄伟九,郭非,董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响. 材料导报. 2020(Z1): 307-311 . 百度学术
    18. 苑晨晨,蒋健博,李慧,李福山,崔梦宇,徐荣正. 超轻双相LZ91镁锂合金搅拌摩擦搭接焊接技术研究. 有色金属工程. 2020(07): 26-31 . 百度学术
    19. 江雯,蒋璐瑶,黄伟九,郭非,董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响. 材料导报. 2020(S1): 307-311 . 百度学术
    20. 李慧,徐荣正,侯艳喜,国旭明. 镁锂合金的焊接技术及其在航天领域的应用. 热加工工艺. 2019(01): 1-4 . 百度学术
    21. 范蒙,张贵锋,柴东郎,王士元. 镁锂超轻合金搅拌摩擦焊及其机制的研究. 焊管. 2019(11): 25-30 . 百度学术

    其他类型引用(11)

图(10)  /  表(3)
计量
  • 文章访问数:  223
  • HTML全文浏览量:  16
  • PDF下载量:  58
  • 被引次数: 32
出版历程
  • 收稿日期:  2024-07-17
  • 网络出版日期:  2024-12-26

目录

/

返回文章
返回