高级检索

K-TIG焊接研究现状

石永华, 王天序, 詹家通

石永华, 王天序, 詹家通. K-TIG焊接研究现状[J]. 焊接学报, 2024, 45(11): 35-44. DOI: 10.12073/j.hjxb.20240703002
引用本文: 石永华, 王天序, 詹家通. K-TIG焊接研究现状[J]. 焊接学报, 2024, 45(11): 35-44. DOI: 10.12073/j.hjxb.20240703002
SHI Yonghua, WANG Tianxu, ZHAN Jiatong. Research status of K-TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 35-44. DOI: 10.12073/j.hjxb.20240703002
Citation: SHI Yonghua, WANG Tianxu, ZHAN Jiatong. Research status of K-TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 35-44. DOI: 10.12073/j.hjxb.20240703002

K-TIG焊接研究现状

基金项目: 国家重点研发计划(2023YFC2809800);2023年度深圳高新区龙华园区创新平台建设项目(11003a20241221fcbb079)
详细信息
    作者简介:

    石永华,博士,教授,博士研究生导师;主要研究方向为高效智能焊接技术与装备;Email: yhuashi@scut.edu.cn

  • 中图分类号: TG 444+.4

Research status of K-TIG welding

  • 摘要:

    随着科技的不断进步,锁孔效应钨极氩弧焊(keyhole tungsten inert gas,K-TIG)因其在中厚板焊接中的显著优势,成为现代工业中广泛应用的高效焊接技术之一,在航空航天、核工业、石油化工和船舶制造等对焊接质量要求极高的领域中,应用前景广阔. 文中系统回顾了K-TIG焊的发展历程及其在各类材料,如不锈钢、镍合金和钛合金等应用中的现状,同时,智能化焊接技术的发展为K-TIG焊带来了新契机,通过实时监测、自动控制和焊缝跟踪等先进技术,进一步提升了焊接过程的精确性和可靠性,还探讨了熔池熔透识别技术和焊缝跟踪技术的发展现状,这些技术在提高焊接质量和效率方面发挥了重要作用,通过对K-TIG焊的全面分析,旨在为未来的研究提供参考,并为实际应用提供指导.

    Abstract:

    With the continuous advancement of technology, K-TIG welding has become one of the most widely used high-efficiency welding technologies in modern industry due to its significant advantages in medium and thick plate welding. K-TIG welding has broad application prospects in fields with stringent welding quality requirements, such as aerospace, nuclear industry, petrochemical, and shipbuilding. This paper systematically reviews the development of K-TIG welding and its current applications in various materials, including stainless steel, nickel alloys, and titanium alloys. Additionally, the development of intelligent welding technologies presents new opportunities for K-TIG welding. Advanced technologies such as real-time monitoring, automatic control, and seam tracking have further enhanced the precision and reliability of the welding process. The paper also explores the current state of penetration pool recognition technology and seam tracking technology, which play important roles in improving welding quality and efficiency. Through a comprehensive analysis of K-TIG welding technology, this paper aims to provide a reference for future research and offer guidance for practical applications.

  • 2219铝合金作为重要的轻量化结构材料广泛应用于运载火箭贮箱等关键构件. 焊接是铝合金航空航天构件成形制造的必要工序,焊缝质量直接关系到铝合金构件的服役可靠性. 变极性钨极氩弧焊(variable polarity tungsten inert gas welding, VPTIG)因其工艺适应性好等优点,目前是2219铝合金焊接生产的主流工艺. 随着焊接电源技术的不断发展,有研究人员在常规VPTIG基础上引入高频(≥20 kHz)脉冲电流,创新性地提出了双频复合脉冲变极性氩弧焊接工艺(double-pulsed variable polarity tungsten inert gas welding, DP-VPTIG)[1]. 研究表明,20 kHz以上高频脉冲电流的引入可增强电弧力和挺度,增大焊缝熔深、增强熔池流动,促进焊缝组织细化,加速熔池气体逸出,进一步提升接头性能[2-3].

    尽管VPTIG工艺已获得显著进步,但2219铝合金熔化焊接头强度系数和断后伸长率仍普遍较低,对接头进行强塑化处理具有重要的工程应用价值. 焊后热处理是调控接头显微组织和力学性能的重要手段. 目前针对2219铝合金电弧焊接头热处理优化的研究报道相对较少. 由于含有约6%Cu元素,2219铝合金可通过不同的时效处理在Al基体中引入多种沉淀析出相(GP,θ″,θ′,θ),进而获得不同程度的析出强化效果[4]. Ding等人[5]研究发现固溶时效处理能对2219铝合金弧焊接头抗拉强度和疲劳强度具有一定的提升作用,较焊态分别提高43%和18%. Zhu等人[6]也报道了相似的研究结果,通过固溶时效处理可使得2219铝合金弧焊接头的抗拉强度提高44%,同时也能提高接头的耐腐蚀性能. Lü等人[7]研究了梯度失配对2219铝合金变极性TIG对接焊接头组织和性能的影响. 随着对接失配程度增加,接头强度逐渐降低. 搅拌摩擦焊接头组织和性能的影响. 随时效时间延长,接头强度能显著提高,但断后伸长率有一定降低. 周政等人[8]研究了不同气氛对2219合金TIG焊接头组织与性能的影响,研究发现采用氮气保护TIG焊可减小热影响区面积,提高断后伸长率和焊缝硬度. 综合上述研究,各种焊后热处理工艺对2219铝合金接头性能都能产生显著影响,但不同热处理工艺对接头性能调控的微观组织层面机理并未详细阐明. 如何通过优化焊后热处理工艺发挥材料本征组织-性能特点,实现焊缝强韧化,对进一步提升焊接质量十分关键.

    以4 mm 2219-T6铝合金双频复合脉冲VPTIG焊接接头为研究对象,对比研究两种典型焊后热处理工艺(直接时效处理和固溶时效处理)对接头显微组织演变及力学性能的影响,探究不同热处理状态接头变形行为的微观机制,为2219铝合金电弧焊接接头热处理强化策略的优化设计提供理论参考.

    焊接试件采用2219-T6铝合金板材,尺寸规格为240 mm × 120 mm × 4 mm. 焊前对试件板材进行表面油渍去除和酸碱洗表面氧化层去除,焊接方向垂直板材轧制方向. 采用1.2 mm ER2319焊丝作为填充金属,不开坡口. 通过北京航空航天大学自主研发的超音频脉冲电弧焊接系统(HPVP550)完成焊接试验,采用双频复合变极性脉冲方波电流(图1). 具体焊接工艺参数如表1所示.

    图  1  焊接电流波形示意图
    Figure  1.  Schematic of welding current wave
    表  1  焊接工艺参数
    Table  1.  Welding parameters
    基值电流Ib/A峰值电流IP/A超音频脉冲
    电流IHP/A
    低频脉冲
    周期t2/ms
    超音频脉冲
    周期t3/ms
    变极性电流
    周期t1/ms
    送丝速度vs/(m·min−1)焊接速度v/(m·min−1)氩气流量Q/(L·min−1)
    110220805000.05101.52020
    下载: 导出CSV 
    | 显示表格

    研究设计了两组热处理对比工艺. 根据相关研究报道,2219铝合金的峰值时效温度为175 ℃,保温12 h可获得较好的析出强化效果[5-6]. 因此,第一组为直接时效处理,即将焊接接头直接在175 ℃保温12 h后空冷至室温. 第二组为固溶时效处理,首先将接头在535 ℃保温1 h后快速水冷至室温,再将接头在175 ℃保温12 h后空冷至室温. 同时,将未经过热处理的焊态接头作为对照组.

    采用线切割方法切取并制备金相试样,观察面磨抛后使用Keller试剂对金相试样进行化学侵蚀,使用ZEISS Scope.A1型光学显微镜对接头进行显微组织表征. 微观组织表征样品和力学性能测试取样位置和拉伸试样尺寸如图2所示. 采用截线法对平均晶粒尺寸进行统计测量,每组接头晶粒测量数不少于200个. 采用JEOL JSM 7100F型场发射扫描电镜(scanning electron microscopy, SEM)和FEI Tecnai G2 F20型透射电镜(transmission electron microscopy, TEM)对接头微观组织结构进行细致表征. 通过Image pro plus(IPP)软件对析出相特征尺寸进行定量统计,每组接头所统计的析出相粒子数量不少于100个. 其中,析出相总面积/视域面积百分比即为析出相面积分数. 使用INNOVATEST FALCON500型硬度计对焊接接头进行显微维氏硬度测试,加载载荷1.96 N,加载时间10 s. 在不同热处理状态接头不同区域测试至少10个点,统计硬度平均值作为该区域硬度. 根据GB/T 2651—2008 《焊接接头拉伸试验方法》标准采用INSTRON 5982型万能力学试验机进行室温单轴拉伸试验,拉伸应变速率为0.001 s−1. 测试前,铣掉拉伸试样焊缝处正反面余高.

    图  2  取样位置及样品尺寸示意图
    Figure  2.  Schematic of sampling position and sizes of tensile samples. (a) schematic of sampling position; (b) illustration of tensile sample dimension

    图3为不同热处理状态接头不同区域的光学金相组织. 从图3a~图3c可以发现,不同热处理状态2219铝合金接头热影响区内的α-Al晶粒皆以等轴晶形态为主. 焊态α-Al等轴晶平均直径为41.7 μm,直接时效态平均晶粒尺寸未发生明显增大,达到60.2 μm. 与前两者相比,固溶时效态热影响区等轴晶更加粗大,平均晶粒尺寸增大至96.4 μm. 受熔池凝固界面前沿元素偏聚促进异质形核的影响,氩弧焊可导致具有细晶特征的带状熔合区形成,位于热影响区和焊缝区之间,如图3d~图3f所示. 直接时效处理对熔合区附近的α-Al晶粒形态未造成显著影响,即热影响区为粗等轴晶,熔合区为细等轴晶,焊接区为粗大等轴枝晶且熔合区细晶尺寸未发生明显变化. 但从图3f可观察到,固溶时效态接头熔合区附近各区域内的α-Al晶粒都发生了一定程度的粗化,熔合区细晶组织特征未能得到保留. 如图3g所示,2219铝合金氩弧焊接头焊缝区主要以粗大的α-Al等轴枝晶为主,大量的α + θ共晶组织(图中黑色相)分布于初生α-Al枝晶臂之间. 直接时效处理未改变焊缝区的枝晶形貌特征(图3h),但固溶时效处理导致焊缝区共晶组织显著减少,枝晶形态转变为粗大柱状晶特征(图3i). 由于焊前母材经过轧制 + T6(固溶 + 人工时效)热处理,因此,母材α-Al晶粒由大量沿轧制方向排列的拉长变形晶粒 + 少量细小等轴晶构成(图3j),平均晶粒尺寸为13.4 μm. 经过直接时效处理后,拉长晶粒形貌特征基本保留,晶粒尺寸未发生显著变化,平均晶粒尺寸为22.6 μm. 但经过固溶时效处理后,母材区α-Al晶粒全部转变为粗大等轴晶,平均晶粒尺寸增大至70.1 μm. 从晶粒形态的演变可以推断,较低的时效温度(175 ℃)只能使母材变形晶粒发生轻微的粗化,而较高的固溶处理温度(535 ℃),可显著促进母材晶粒发生再结晶和粗化,使得变形晶粒转变为粗大的等轴晶.

    图  3  不同热处理状态接头不同区域金相组织
    Figure  3.  Metallography of different regions of the joints under different heat treatment conditions. (a) as-welded HAZ; (b) directly aging-treated HAZ; (c) solution and aging treated HAZ; (d) FZ line of the as-welded joint; (e) FZ line of the directly aging-treated joint; (f) FZ line of the solution and aging treated joint; (g) WS of the as-welded joint; (h) WS of the directly aging-treated joint; (i) WS of the solution and aging treated joint; (j) BM of the as-welded joint; (k) BM of the directly aging-treated joint; (l) BM of the solution and aging treated joint

    2219铝合金主要有两类常见第二相:一种是在凝固过程中产生的微米尺度共晶组织,由次生α-Al和θ-Al2Cu相构成[9],主要呈长条状沿初生α-Al晶界分布,少量分布于初生α-Al晶粒内部;第二种为时效处理导致的纳米尺度富Cu析出相,如GP,θ″和θ′等亚稳时效析出相,主要分布于α-Al基体中. 通过SEM可表征不同热处理状态2219铝合金接头焊缝区共晶组织形貌,如图4所示. 从图4a可以看出,焊态焊缝区内存在大量共晶组织,由次生α-Al(暗色)和θ-Al2Cu相(亮色)层状交替构成. 直接时效态焊缝区内的共晶组织相对焊态更加分散,单个共晶组织平均尺寸略微降低,如图4b所示. 经过固溶时效处理后,焊缝区内共晶组织进一步分散,长条状共晶组织消失,且共晶组织内的θ-Al2Cu相由层状转变为更细小的短棒状或球状,如图4c所示.

    图  4  不同热处理状态2219铝合金接头焊缝区扫描电镜表征结果
    Figure  4.  SEM characterization of welding seam of the 2219 aluminum alloy joints under different heat treatment conditions. (a) as welded; (b) directly aging treated; (c) solution and aging treated

    通过TEM对直接时效态和固溶时效态焊缝区内纳米尺度的析出相进行观察,表征结果如图5所示. 从图5a可以发现,直接时效态焊缝基体中存在低密度粗大θ′-Al2Cu析出相,并且析出相颗粒分布不均匀. 而固溶时效处理态焊缝区内存在大量弥散分布的细小θ″-Al3Cu析出相,如图5b所示. 对两种不同热处理接头焊缝区内共晶组织和时效析出相颗粒的特征尺寸进行定量统计,结果如表2所示. 从定量结果可以发现,固溶时效热处理可导致共晶组织减少和细化,同时导致基体内析出相尺寸减小且密度增大.

    表  2  不同热处理焊缝区第二相特征尺寸定量统计结果
    Table  2.  Characteristic sizes of second phases in the welding seams under different heat treatment conditions
    热处理状态α + θ共晶组织析出相
    面积分数f(%)周长l/μm直径D/nm厚度δ/nm数量密度dn/nm−3
    焊态 5.1 12.3
    直接时效 4.7 11.2 106 5.4 11.7
    固溶时效 2.5 1.8 22 0.6 68.5
    下载: 导出CSV 
    | 显示表格
    图  5  不同热处理状态焊缝区透射电镜表征结果
    Figure  5.  TEM characterization results of welding seams under different heat treatment conditions. (a) directly aging treated; (b) solution and aging treated

    不同热处理工艺导致的焊缝区第二相组织演变差异与合金元素扩散行为有密切关系. 由于焊缝金属经历了非平衡快速凝固过程,合金元素未得到充分扩散,不仅导致基体存在一定程度的合金元素过饱和,同时也易造成局部元素偏聚和偏析. 在一定高温下,伴随着合金元素重新溶于基体,焊缝共晶组织会发生回溶;而在较低的温度下保温,α-Al基体中过饱和合金元素将以第二相的形式析出,以上两个过程皆需要通过原子的长程扩散来实现. 在175 ℃直接时效过程中,较低的保温温度使得原子扩散能力有限,富Cu共晶组织相对稳定,经过长时间时效后共晶组织回溶程度较低,焊缝基体元素过饱和程度未得到显著提升. 在时效过程中,较低的元素过饱和度使得析出形核率和形核密度较低,同时元素偏聚和偏析相可为析出提供异质形核点,导致不均匀析出产生,即处于优势能态的第二相晶核将优先吸收周围过饱和原子,进而持续长大熟化. 另外,由于碟盘状θ′/θ″第二相颗粒可引入各向异性的共格应力场,由于析出相粒子之间的共格应力场交互作用,易造成析出相偏聚长大行为[10-11],如图5a中左侧粗大θ′-Al2Cu析出相偏聚形貌. 综合以上因素,直接时效处理最终易造成低密度且分布不均匀的粗大析出相形貌.

    与之不同的是,固溶处理温度(535 ℃)已达到完全α-Al单相区,较高的保温温度使得原子扩散能力显著增强,共晶组织中的合金元素回溶于基体中,α-Al晶内基体中合金元素过饱和度显著增加. 固溶处理不仅减少了α-Al晶界附近共晶组织,同时能有效消除基体中的元素偏聚和偏析结构,有助于成分均匀化. 在相同的时效条件下,基体中较高的元素过饱和度和较均匀的元素分布导致较大的析出均匀形核率和形核密度,最终获得较细小和均匀的第二相析出形貌.

    对不同焊后热处理2219铝合金接头各区域的显微硬度进行测定,结果如表3所示. 结果表明,焊后接头较母材(base metal, BM)发生了显著软化,熔合区为接头强度最大区域,而热影响区(heat affected zone, HAZ)和焊缝区(weld metal, WM)硬度分别仅为母材硬度的78%和56%. 经过直接时效处理后,接头和母材硬度较焊态对应区域硬度略微升高,尤其是熔合区硬度升高显著,与母材硬度相当. 但是,热影响区和焊缝区硬度仍然较低,仅能达到母材硬度的83%和64%,接头软化现象依旧突出. 相比焊态和直接时效态,固溶时效处理使得接头各区域硬度得到了显著提升. 焊缝区硬度能达到母材硬度的93%,热影响区为接头强度最弱区域. 同时,接头各区域硬度分布更加均衡,接头软化现象得到明显改善,接头达到近似等强匹配. 但需要注意的是,固溶时效处理同时也导致母材硬度较焊态升高了16%.

    表  3  不同热处理状态2219铝合金接头显微硬度(HV0.2)
    Table  3.  Microhardness of 2219 aluminum alloy joints under different heat treatment conditions
    热处理状态热影响区熔合区焊缝母材
    焊态10411276134
    直接时效处理11714189140
    固溶时效处理144155148156
    下载: 导出CSV 
    | 显示表格

    不同热处理状态2219铝合金接头拉伸性能如表4所示. 焊态接头强度和断后伸长率相比母材发生了显著降低,分别仅为母材的57%和45%. 焊态接头强塑性显著恶化与接头软化密切相关. 由于接头焊缝区强度较母材区显著降低,在拉伸过程中,焊缝区首先发生屈服,导致后续塑性变形局限在焊缝区内发生,而母材区几乎不发生塑性变形,即发生显著的应变局域化,最终导致试样整体强度和断后伸长率降低. 经过直接时效处理后,接头整体强度较焊态略微升高,强度系数达到0.60,但断后伸长率却进一步降低至2.0%. 经过固溶时效处理后,接头强度较焊态接头发生显著升高,强度系数达到0.84,并且接头断后伸长率升高至7.0%,达到母材断后伸长率的56%.

    表  4  不同热处理状态2219铝合金接头拉伸性能
    Table  4.  Tensile properties of 2219 aluminum alloy joints under different heat treatment conditions
    热处理状态抗拉强度
    Rm/MPa
    断后伸长率
    A(%)
    强度系数
    φ
    2219-T6母材43912.5
    焊态2535.50.57
    直接时效处理2642.00.60
    固溶时效处理3717.00.84
    下载: 导出CSV 
    | 显示表格

    直接时效处理后,焊缝区为低密度不均匀分布的粗大θ′-Al2Cu析出相,其与基体保持半共格关系,只能引入较弱的共格应力场,且与位错的交互方式主要为绕过机制. 此种析出相组织析出强化效果较弱,对焊缝强化效果有限[12]. 焊态和直接时效态接头各区域的强度差异较大,导致拉伸过程中塑性应变主要集中在显著软化的焊缝区内,进而导致接头整体拉伸性能显著变差. 相比而言,固溶时效处理虽然导致α-Al晶粒发生粗化,但焊缝区高密度纳米θ″-Al3Cu析出相可引入较强的共格应力场. 同时,其与位错交互方式主要为切过机制,可产生更显著的析出强化效应[13-14]. 另外,接头各区域强度匹配更加均衡,促进接头整体塑性均匀变形,可获得较大的均匀断后伸长率,伴随显著的应变硬化可获得较高的抗拉强度.

    为研究焊后热处理对拉伸断裂行为的影响,对拉伸样品断口附近区域进行截面金相组织观察,结果如图6所示. 焊态和直接时效态接头拉伸断裂位置位于熔合区附近1 ~ 2 mm距离范围的焊缝区内,且断裂裂纹与拉伸方向呈约45°. 通过高倍数金相照片(图6中插图)可以观察到,焊态和直接时效态接头断裂裂纹倾向于沿长条状共晶组织扩展.

    图  6  不同热处理状态2219铝合金接头拉伸断口裂纹扩展路径
    Figure  6.  Cracking path of tensile sample fracture of the 2219 aluminum alloy joints under different heat treatment conditions. (a) as welded; (b) directly aging treated; (c) solution and aging treated

    造成以上现象主要是由于焊缝区显著软化,拉伸过程中主要的塑性应变将被局限在焊缝区,即发生显著的应变局域化现象. 沿晶界分布的长条共晶组织与基体之间的相界面易存在应力集中,可以为拉伸裂纹提供低能扩展通道. 而经过固溶时效处理后,接头拉伸断裂位于紧挨着熔合区的热影响区内,且裂纹扩展方向与拉伸方向几乎呈90°. 从硬度测试结果(表3)可知,固溶时效态接头热影响区为硬度最低的区域,拉伸过程中应变易集中于此区域,造成断裂在此区域萌生和扩展.

    (1) 与2219铝合金双频复合脉冲TIG焊态组织相比,直接时效处理(175 ℃/12 h-空冷)对α-Al晶粒和共晶组织形貌影响较小,并导致焊缝区形成低密度不均匀分布的粗大θ′-Al2Cu析出相;固溶时效处理(535 ℃/1 h-水淬 + 175 ℃/12 h-空冷)使得α-Al晶粒发生粗化,同时共晶组织减少且细化,在焊缝区引入高密度均匀细小的θ″-Al3Cu相析出相.

    (2) 直接时效处理对2219铝合金双频复合脉冲TIG焊接头强化作用有限,焊缝区硬度仅为89 HV0.2 (母材硬度64%),强度系数仅达到0.60,断后伸长率降低至2.0%;固溶时效处理可显著改善接头软化问题,接头各区域硬度接近母材硬度,强度系数升高至0.84,断后伸长率达到7.0%.

    (3) 直接时效态接头拉伸断裂于焊缝区,显著的接头软化和不均衡的强度匹配导致接头均匀塑性变形减小和整体强度显著降低;固溶时效处理可获得显著的接头析出强化效应,接头均匀塑性变形能力得到提升,拉伸断裂于热影响区.

  • 图  1   K-TIG焊枪

    Figure  1.   K-TIG welding torch

    图  2   焊枪配置轴向磁场装置

    Figure  2.   A welding torch equipped with an axial magnetic field device

    图  3   不同磁场作用下熔池的电弧形状和洛伦兹力示意图

    Figure  3.   Schematic diagram of arc shape and Lorentz force of molten pool under different magnetic fields. (a) welding workpiece; (b) WMF; (c) TMF; (d) LMF

    图  4   基于钢/玻璃夹层和高动态范围相机的视觉系统

    Figure  4.   Vision system based on steel/glass interlayer and high dynamic range camera

    图  5   焊接质量模型

    Figure  5.   Welding quality model. (a) one-stage model; (b) two-stage model

    图  6   窄距焊缝系统

    Figure  6.   Narrow gap welding system

    图  7   使用YOLOv5方法前后对比

    Figure  7.   Comparison of the detection results between the traditional image processing method and the YOLOv5-based method. (a) traditional image processing method; (b) YOLOv5-based method

    图  8   焊接流场与温度场分布

    Figure  8.   Welding flow field and temperature field distribution. (a) section of welding workpiece; (b) distribute along the weld

    表  1   添加粒子群优化前后的算法精度

    Table  1   Algorithm accuracy before and after particle swarm optimization

    模型 最大精度
    ACCmax(%)
    平均精度
    ACCmean(%)
    精度标准偏差
    σ(%)
    CV-SVM 89.795 9 83.272 2 3.476 5
    PSO-CV-SVM 97.165 5 94.646 1 4.650 4
    下载: 导出CSV
  • [1]

    Shi Y H, Cui Y X, Cui S W, et al. A novel high-efficiency keyhole tungsten inert gas (K-TIG) welding: principles and practices[J]. Welding Technology, 2021: 313 − 367.

    [2] 陈金荣. 磁控K-TIG焊接电弧形态及焊缝成形研究[D]. 广州: 华南理工大学, 2021.

    Chen Jinrong. Research on arc shape and weld formation of magnetic-controlled K-TIG welding [D].Guangzhou: South China University of Technology, 2021.

    [3] 占爱文. K-TIG焊接熔池和锁孔视觉检测与熔透状态识别的研究[D]. 广州: 华南理工大学, 2021.

    Zhan Aiwen. Research on visual detection and penetration state identification of K-TIG welding pool and keyhole [D]. Guangzhou: South China University of Technology, 2021.

    [4] 任冠鹏, 杨青云, 徐家磊, 等. Gr.12钛合金K-TIG焊接接头的组织和力学性能研究[J]. 热加工工艺, 2022, 51(21): 131 − 133.

    Ren Guanpeng, Yang Qingyun, Xu Jialei, et al. Study on microstructure and mechanical properties of Gr.12 titanium alloy K-TIG welded joint[J]. Thermal processing, 2022, 51(21): 131 − 133.

    [5]

    Kumar K, Kumar C S, Masanta M, et al. A review on TIG welding technology variants and its effect on weld geometry[J]. Materials Today: Proceedings, 2022, 50(5): 999 − 1004.

    [6]

    Sharma G, Tyagi R, Priyanshu, et al. Variants of TIG welding process for improvement of weld penetration depth-A review[J]. Materials Today: Proceedings, 2022, 64(3): 1362 − 1366.

    [7] 冯悦峤. 中厚钢板的深熔TIG焊工艺研究及温度场数值模拟[D]. 天津:天津大学,2024.

    Feng Yueqiao. Medium plate of research and deep penetrating TIG welding process temperature field numerical simulation [D]. Tianjin:Tianjin University,2024.

    [8]

    Liu Z M, Fang Y X, Cui S L, et al. Stable keyhole welding process with K-TIG[J]. Journal of Materials Processing Technology, 2016, 238: 65 − 72. doi: 10.1016/j.jmatprotec.2016.07.005

    [9]

    Su L H , Fei Z Y , Davis B , et al. Digital image correlation study on tensile properties of high strength quenched and tempered steel weld joints prepared by K-TIG and GMAW[J]. Materials Science and Engineering A, 2021, 827(6): 142033.

    [10]

    Zhang H C, Yu J, Zhang Z X, et al. Arc characteristics and welding process of laser K-TIG hybrid welding [J]. Metals, 2022, 12(7):1139.

    [11]

    Chudziński M, Krajewski S J , Zmitrowicz P . Application of the keyhole TIG process for high productivity welding of superduplex stainless steel[C]//International Conference Mechatronics. Springer, Cham, 2022, 377: 26 − 44.

    [12]

    Cui S L, Liu Z M, Fang Y X, et al. Keyhole process in K-TIG welding on 4 mm thick 304 stainless steel[J]. Journal of Materials Processing Technology, 2017, 243: 217 − 228.

    [13]

    Luo Z, Xie Y, Cui S L. Morphology characterization of molten pool flow behavior during K-TIG welding based on 3D reconstruction techniques[J]. Journal of Tianjin University Science and Technology, 2018, 51(5): 517 − 521. doi: 10.11784/tdxbz201705072

    [14]

    Feng Y Q, Luo Z, Liu Z M, et al. Keyhole gas tungsten arc welding of AISI 316L stainless steel[J]. Materials & Design, 2015, 85: 24 − 31.

    [15]

    Huang Y Y , Luo Z , Lei Y C, et al. Dissimilar joining of AISI 304/Q345 steels in keyhole tungsten inert gas welding process[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96: 4041 − 4049.

    [16]

    Li X G, Gong B M, Deng C Y, et al. Failure mechanism transition of hydrogen embrittlement in AISI 304 K-TIG weld metal under tensile loading[J]. Corrosion Science, 2018, 130: 241 − 251. doi: 10.1016/j.corsci.2017.10.032

    [17]

    Li X G, Gong B M, Deng C Y, et al. Effect of pre-strain on microstructure and hydrogen embrittlement of K-TIG welded austenitic stainless steel[J]. Corrosion Science, 2019, 149: 1 − 17. doi: 10.1016/j.corsci.2018.12.018

    [18]

    Fei Z Y, Pan Z X, Cuiuri D, et al. Microstructural characterization and mechanical properties of K-TIG welded SAF2205/AISI316L dissimilar joint[J]. Journal of Manufacturing Processes, 2019, 45: 340 − 355. doi: 10.1016/j.jmapro.2019.07.017

    [19]

    Fei Z Y, Pan Z X, Cuiuri D, et al. A combination of keyhole GTAW with a trapezoidal interlayer: a new insight into armour steel welding [J]. Materials, 2019, 12(21),3571.

    [20]

    Fei Z Y, Pan Z X, Cuiuri D, et al. Effect of post-weld heat treatment on microstructure and mechanical properties of deep penetration autogenous TIG-welded dissimilar joint between creep strength enhanced ferritic steel and austenitic stainless steel[J]. International Journal of Advanced Manufacturing Technology, 2020, 108(9-10): 3207 − 3229. doi: 10.1007/s00170-020-05605-2

    [21]

    Cui S W, Pang S W, Pang D Q, et al. Numerical simulation and experimental investigation on 2205 duplex stainless steel K-TIG welded joint [J]. Metals, 2021, 11(8),1323.

    [22] 朱加雷, 郭方涛, 李守根, 等. S32101双相不锈钢U形坡口激光填充焊接修复工艺[J]. 焊接学报, 2019, 45(10): 69 − 78.

    Zhu Jialei, Guo Fangtao, Li Shougen, et al. Laser filling welding process for U-shaped groove of S32101 duplex stainless steel[J]. Transactions of the China Welding Institution, 2019, 45(10): 69 − 78.

    [23]

    Cui S W, Yu Y H, Tian F Y, et al. Morphology, microstructure, and mechanical properties of S32101 duplex stainless-steel joints in K-TIG welding[J]. Materials, 2022, 15(15): 5432.

    [24]

    Cui S W, Pang S W, Pang D Q, et al. The microstructure and pitting corrosion behavior of K-TIG welded joints of the UNS S32101 duplex stainless steel[J]. Materials, 2023, 16(1): 250.

    [25]

    Han L H, Han T, Chen G X, et al. Influence of heat input on microstructure, hardness and pitting corrosion of weld metal in duplex stainless steel welded by keyhole-TIG[J]. Materials Characterization, 2021, 175: 111052.

    [26]

    Han L H, Han T, Wang B Y, et al. Effects of keyhole tungsten inert gas welding parameters on 2205 duplex stainless steel welded joints[J]. Journal of Materials Engineering and Performance, 2022, 31(2): 1358 − 1372. doi: 10.1007/s11665-021-06269-z

    [27]

    Zmitrowicz P, Kawiak M, Kochmanski P, et al. Microstructure and mechanical properties of welded joints of 1.4462 duplex steel made by the K-TIG method[J]. Materials, 2021, 14(24): 7868.

    [28]

    Wang Y P, Qi B J, Cong B Q, et al. Keyhole welding of AA2219 aluminum alloy with double-pulsed variable polarity gas tungsten arc welding[J]. Journal of Manufacturing Processes, 2018, 34: 179 − 186. doi: 10.1016/j.jmapro.2018.06.006

    [29]

    Yin Y H, Wang Y P, Gao H, et al. Stimulated pulse keyhole behavior in double-pulsed VPTIG welding of AA2219 high strength aluminum alloy[J]. Rare Metal Materials and Engineering, 2022, 51(10): 3596 − 3601.

    [30]

    Xu T, Shi Y H, Jiang Z X, et al. Improvement of cryogenic toughness for 9% Ni steel keyhole TIG butt-welded joints with a Ni interlayer[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2022, 835: 142661.

    [31]

    Xuan Y, Yang J, Liu H B, et al. Microstructure and mechanical properties of Invar36 alloy joints using keyhole TIG welding[J]. Science and Technology of Welding and Joining, 2020, 25(8): 712 − 718. doi: 10.1080/13621718.2020.1830545

    [32]

    Liu H B, Lü S H, Xuan Y, et al. Effects of heat input on weld microstructure and properties in keyhole TIG welding of INVAR 36 alloy[J]. Materials, 2023, 16(10): 3692.

    [33]

    Ariaseta A, Khan A K, Andersson J, et al. Microstructural study of keyhole TIG welded nickel-based superalloy G27[J]. Materials Characterization, 2023, 204: 113178.

    [34]

    Ariaseta A, Khan A K, Andersson J, et al. Microstructural analysis of K-TIG-welded new Ni-based superalloy VDM alloy 780[J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2024, 55(8): 2952 − 2976.

    [35]

    Cui S W, Shi Y H, Zhu T, et al. Microstructure, texture, and mechanical properties of Ti-6Al-4V joints by K-TIG welding[J]. Journal of Manufacturing Processes, 2019, 37: 418 − 424. doi: 10.1016/j.jmapro.2018.12.022

    [36]

    Cui S W, Shi Y H, Zhang C S. Microstructure and mechanical properties of TC4 titanium alloy K-TIG welded joints[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(2): 416 − 425. doi: 10.1016/S1003-6326(21)65506-1

    [37]

    Cai X Y, Dong B L, Lin S B, et al. Keyhole TIG welding of 3-mm-thick 10MnNiCr steel plates[J]. Welding in the World, 2022, 66(7): 1349 − 1356. doi: 10.1007/s40194-022-01271-y

    [38]

    Ou P, Cao Z Q, Rong J, et al. Molecular dynamics study on the welding behavior in dissimilar TC4-TA17 titanium alloys[J]. Materials, 2022, 15(16): 5606.

    [39]

    Ou P, Cao Z Q, Hai M N, et al. Microstructure and mechanical properties of K-TIG welded dissimilar joints between TC4 and TA17 titanium alloys[J]. Materials Characterization, 2023, 196: 112644.

    [40]

    Jiang S Y, Wang X W, Chen H M, et al. The impact of adscititious longitudinal magnetic field on CO2 welding process[J]. Advanced Materials Research, 2012, 538-541: 1447 − 1450. doi: 10.4028/www.scientific.net/AMR.538-541.1447

    [41]

    Wang X M, Zhang W , Wang Y. The influence of longitudinal magnetic field on DCEN MAG welding[C]//International Conference on Advanced Design and Manufacturing Engineering, 2012, 217: 1843 − 1846.

    [42]

    Zhao Z Y, Mi G Y, Zhang X, et al. Influence of additional magnetic field on laser hot wire welding of stainless steel[J]. Laser Technology, 2017, 41(2): 270 − 274.

    [43]

    Gou W J, Xia G H, Feng Z X. Study on low-frequency magnetic radiation of DC arc welding output cable[C]//International Conference on Advances in Materials, Machinery, Electronics. 2019.

    [44]

    Chen J, Chen Q, Wu C S. Study of high-speed pulsed gas metal arc welding assisted by external magnetic-field[J]. Science and Technology of Welding and Joining, 2020, 25(7): 564 − 570.

    [45] 石永华, 宁强, 崔延鑫. Q345R钢纵向磁场辅助K-TIG焊接接头组织和性能研究[J]. 电焊机, 2020, 50(9): 87 − 91.

    Shi Yonghua, Ning Qiang, Cui Yanxin. Study on microstructure and properties of K-TIG welded joint of Q345R steel assisted by longitudinal magnetic field[J]. Electric Welding Machine, 2020, 50(9): 87 − 91.

    [46] 赵建强, 石永华, 詹家通, 等. 外加轴向磁场 K-TIG 横焊电弧形态及焊缝成形[J]. 焊接, 2023(4): 1 − 6.

    Zhao Jianqiang, Shi Yonghua, Zhan Jiatong, et al. Arc shape and weld formation of K-TIG transverse welding with external axial magnetic field[J]. Welding & Joining, 2023(4): 1 − 6.

    [47]

    Cui Y X, Kang Y P, Shi Y H, et al. Investigation into the arc profiles and penetration ability of axial magnetic field-enhanced K-TIG welding by means of a specially designed sandwich[J]. Journal of Manufacturing Processes, 2021, 68: 32 − 41. doi: 10.1016/j.jmapro.2021.05.025

    [48]

    Xu T, Shi Y H, Cui Y X, et al. Effects of magnetic fields in arc welding, laser welding, and resistance spot welding: a review[J]. Advanced Engineering Materials, 2023, 25(5): 2200682. doi: 10.1002/adem.202200682

    [49]

    Xu T, Shi Y H, Jiang Z X, et al. An extraordinary improvement in cryogenic toughness of K-TIG welded 9Ni steel joint assisted by alternating axial magnetic field[J]. Journal of Materials Research and Technology-JMR& T, 2023, 25: 3071 − 3077.

    [50]

    Liu Z M, Chen S Y, Yuan X, et al. Magnetic-enhanced keyhole TIG welding process[J]. International Journal of Advanced Manufacturing Technology, 2018, 99(1-4): 275 − 285. doi: 10.1007/s00170-018-2501-0

    [51]

    Liu S, Liu Z M, Zhao X C, et al. Influence of cusp magnetic field configuration on K-TIG welding arc penetration behavior[J]. Journal of Manufacturing Processes, 2020, 53: 229 − 237. doi: 10.1016/j.jmapro.2020.02.027.t

    [52] 陈泓宇. 集装箱自动化焊接系统的轨迹规划和轨迹校正方法研究[D]. 广州:华南理工大学, 2020.

    Chen Hongyu. Research on trajectory planning and trajectory correction method of container automatic welding system [D]. Guangzhou: South China University of Technology, 2020.

    [53] 张抱日. 基于高动态成像的深熔K-TIG焊熔池状态检测及其变化机理研究[D]. 广州: 华南理工大学, 2021.

    Zhang Baori. State detection and change mechanism of deep penetration K-TIG welding pool based on high dynamic imaging [D]. Guangzhou: South China University of Technology, 2021.

    [54] 鹿安理, 史清宇, 赵海燕, 等. 厚板焊接过程温度场、应力场的三维有限元数值模拟[J]. 中国机械工程, 2001, 12(2): 183 − 186. doi: 10.3321/j.issn:1004-132X.2001.02.019

    Lu Anli, Shi Qingyu, Zhao Haiyan, et al. Thick plate welding temperature field, stress field, the three-dimensional finite element numerical simulation[J]. China Mechanical Engineering, 2001, 12(2): 183 − 186. doi: 10.3321/j.issn:1004-132X.2001.02.019

    [55] 吴言高, 李午申, 邹宏军, 等. 焊接数值模拟技术发展现状[J]. 焊接学报, 2002, 23(3): 89 − 92. doi: 10.3321/j.issn:0253-360X.2002.03.024

    Wu Yangao, Li Wushen, Zou Hongjun, et al. Welding current situation of the development of numerical simulation technology[J]. Transactions of the China Welding Institution, 2002, 23(3): 89 − 92. doi: 10.3321/j.issn:0253-360X.2002.03.024

    [56] 梁斌, 崔延鑫, 石永华, 等. 深熔K-TIG焊接过程的声信号采集及特征分析[J]. 电焊机, 2018, 48(10): 94 − 97. doi: CNKI:SUN:DHJI.0.2018-10-030

    Liang Bin, Cui Yanxin, Shi Yonghua, et al. Deep penetrating K - TIG welding process characteristics of acoustic signal acquisition and analysis[J]. Electric Welding Machine, 2018, 48(10): 94 − 97. doi: CNKI:SUN:DHJI.0.2018-10-030

    [57]

    Zhu T, Shi Y H, Cui S W, et al. Recognition of weld penetration during K-TIG welding based on acoustic and visual sensing[J]. Sensing and Imaging, 2019, 20(1): 1 − 21. doi: 10.1007/s11220-018-0224-9

    [58]

    Cui Y X, Shi Y H, Zhu T, et al. Welding penetration recognition based on arc sound and electrical signals in K-TIG welding[J]. Measurement, 2020, 163: 107966.

    [59]

    Cui Y X, Shi Y H, Ning Q, et al. Investigation into keyhole-weld pool dynamic behaviors based on HDR vision sensing of real-time K-TIG welding process through a steel/glass sandwich[J]. Advances in Manufacturing, 2021, 9(1): 136 − 144. doi: 10.1007/s40436-020-00335-w

    [60]

    Li B H, Shi Y H, Wang Z S. Penetration identification of magnetic controlled keyhole tungsten inert gas horizontal welding based on OCR-SVM[J]. Welding in the World, 2024, 68(9): 2281 − 2292. doi: 10.1007/s40194-024-01752-2

    [61]

    Shi Y H , Wang Z H, Chen X Y, et al. Real-time K-TIG welding penetration prediction on embedded system using a segmentation-LSTM model[J]. Advances in Manufacturing, 2023, 11(3): 444 − 461.

    [62]

    Bai Huizhong, Ni Na, Wu Yingna, et al. Real-time penetration recognition based on voltage signal in K-TIG welding[J]. Applied Sciences-Basel, 2023, 13(13): 7412.

    [63]

    Yang D Y, Dai P H, Cui S W, et al. Real-time recognition of molten pools based on improved DeepLabV3 + in keyhole tungsten inert gas welding applications[J]. Electronics, 2024, 13(2): 283.

    [64]

    Zhan B R, Guo S Y, Shi Y H. Robotic deep penetration K-TIG welding system based on weld penetration detection[J]. Journal of Mechanical Engineering, 2019, 55(17): 14 − 21.

    [65] 刘炜聪. K-TIG焊接窄间隙焊缝视觉跟踪系统研究[D]. 广州: 华南理工大学, 2019.

    Liu Weicong. Research on K-TIG welding narrow gap weld visual tracking system [D]. Guangzhou: South China University of Technology, 2019.

    [66]

    Chen Y K, Shi Y H, Cui Y X, et al. Narrow gap deviation detection in keyhole TIG welding using image processing method based on Mask-RCNN model[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112: 2015 − 2025.

    [67]

    Wang Z S, Shi Y H, Hong X B, et al. Weld pool and keyhole geometric feature extraction in K-TIG welding with a gradual gap based on an improved HDR algorithm[J]. Journal of Manufacturing Processes, 2022, 73: 409 − 427. doi: 10.1016/j.jmapro.2021.11.004

    [68]

    Lin Z L, Shi Y H, Wang Z S, et al. Intelligent seam tracking of an ultranarrow gap during K-TIG welding: a hybrid CNN and adaptive ROI operation algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1 − 14.

    [69]

    Chu J, Wang X, Ma Y J, et al. Numerical simulation of melt pool formation in laser transmission joining PET with microtextured surface pretreated SUS304 stainless steel[J]. International Journal of Heat and Mass Transfer, 2023, 216: 124560.

    [70]

    Cui C Y, Chen L, Yang J, et al. Numerical simulation and testing of laser-MIG hybrid-welding angle-structure sheets[J]. Applied Optics, 2023, 62(23): 6180 − 6193. doi: 10.1364/AO.494547

    [71]

    Zhang Y J, Li Y H, Zhang Y L, et al. Numerical analysis of the behavior of molten pool and the suppression mechanism of undercut defect in TIG-MIG hybrid welding[J]. International Journal of Heat and Mass Transfer, 2024, 218: 124757. doi: 10.1016/j.ijheatmasstransfer.2023.124757

    [72]

    Zhang R H, Li H X, Li M, et al. Numerical analysis on keyhole gas tungsten arc welding[J]. Electric Welding Machine, 2012, 42(12): 7 − 11.

    [73]

    Song B Y, Dong B L, Cai X Y, et al. Numerical simulation of arc characteristics in K-TIG welding[J]. The International Journal of Advanced Manufacturing Technology, 2024, 132(7): 3821 − 3837.

    [74]

    Chen S Y, Liu Z M, Zhao X C, et al. Cathode-focused high-current arc: Heat source development with stable keyhole in stationary welding[J]. International Journal of Heat and Mass Transfer, 2019, 143: 118475. doi: 10.1016/j.ijheatmasstransfer.2019.118475

    [75]

    Cui S W, Pang S W, Pang D Q, et al. Influence of welding speeds on the morphology, mechanical properties, and microstructure of 2205 DSS welded joint by K-TIG welding[J]. Materials, 2021, 14(12): 3426. doi: 10.3390/ma14123426

    [76]

    Cui S W, Dai P H, Ma R, et al. Mechanism study of flow characteristics of molten pool and keyhole dynamic behavior of K-TIG welding[J]. The International Journal of Advanced Manufacturing Technology, 2024, 130(3): 1195 − 1206.

    [77] 庞舒文. 2205双相不锈钢K-TIG焊数值模拟及接头性能研究[D]. 柳州: 广西科技大学, 2023.

    Pang Shuwen. Numerical simulation and joints performance study of K-TIG welding of 2205 duplex stainless steel[D].Liuzhou: Guangxi University of Science and Technology, 2023.

  • 期刊类型引用(2)

    1. 孙树红,徐姗姗. 家蚕嗅觉毛捕捉性信息素的建模与仿真. 计算机与数字工程. 2020(01): 51-56 . 百度学术
    2. 奚小波,史扬杰,单翔,张琦,金亦富,龚俊杰,张剑峰,张瑞宏. 基于Bezier曲线优化的农机自动驾驶避障控制方法. 农业工程学报. 2019(19): 82-88 . 百度学术

    其他类型引用(2)

图(8)  /  表(1)
计量
  • 文章访问数:  212
  • HTML全文浏览量:  37
  • PDF下载量:  84
  • 被引次数: 4
出版历程
  • 收稿日期:  2024-07-02
  • 网络出版日期:  2024-11-05
  • 刊出日期:  2024-11-24

目录

/

返回文章
返回