Microstructure evolution of 2195 Al-Li alloy friction stir welded joint and enhancing performance by laser shock peening
-
摘要:
为了研究2195铝锂合金搅拌摩擦焊接头的组织与性能特点并试图加以改善,采用不同参数焊接了6.5 mm厚的2195-T8铝锂合金试板,使用OM,EBSD和TEM等技术观察并分析了搅拌摩擦焊接头各区域的组织变化,通过显微硬度分析、拉伸试验和数字图像相关技术(digital image correlation,DIC)等方法测试并讨论了接头的性能特点. 结果表明,2195-T8铝锂合金的搅拌摩擦焊在试验参数范围内能稳定获得成形良好的接头,强度系数达到70%、断后伸长率达到7%. 搅拌摩擦焊接头内各区域发生了强化相的损失,焊核区的T1相和θ'相完全溶解,形成β'/δ'相. 焊核区和轴肩影响区在拉伸试验中发生应变集中. 对焊缝进行双面激光冲击强化(laser shock peening,LSP)处理后,接头屈服强度提升51 MPa,且断裂路径从焊核区变为热力影响区外侧,改变后断裂位置对应于硬度测试中的最低硬度区域.
Abstract:To investigate the microstructure and mechanical properties of friction stir welding (FSW) joints of 2195 aluminum-lithium alloy and attempt to improve them, 6.5 mm thick 2195-T8 aluminum-lithium alloy test plates were welded using different parameters. The microstructure evolution of different zones of the joints was investigated using OM, EBSD, TEM and other analytical techniques. The mechanical properties including microhardness and tensile properties of the joints were tested and digital image correlation (DIC) was applied. The results indicate that FSW of 2195-T8 aluminum-lithium alloy can reliably produce well-formed joints within the tested parameter range, with a strength coefficient of 70% and a fracture elongation of 7%. T1 and θ' completely dissolved in the weld nugget zone while β'/δ' was formed. Strain concentration occurred in the weld nugget and shoulder affected zones during tensile testing. After double-sided laser shock peening (LSP), the yield strength of the joint increased by 51 MPa, and the fracture path shifted from the weld nugget zone to the outer side of the thermal-mechanical affected zone. The new fracture location corresponded to the region of lowest hardness as determined by hardness testing.
-
-
表 1 不同处理条件下接头的拉伸性能
Table 1 Tensile properties of joints under different treatment conditions
处理条件 抗拉强度
Rm/MPa屈服强度
ReL/MPa断后伸长率
A(%)原始接头 427 273 7.6 仅铣去上层0.6 mm 444 297 7.1 铣去上层0.6 mm +
双面LSP448 348 6.1 -
[1] Ahmed M M Z, El-Sayed Seleman M M, Fydrych D, et al. Friction stir welding of aluminum in the aerospace industry: The current progress and state-of-the-art review[J]. Materials, 2023, 16: 2971. doi: 10.3390/ma16082971
[2] Yang Y, Bi J, Liu H, et al. Research progress on the microstructure and mechanical properties of friction stir welded Al-Li alloy joints[J]. Journal of Manufacturing Progress, 2022, 82: 230 − 244. doi: 10.1016/j.jmapro.2022.07.067
[3] 李充, 田亚林, 齐振国, 等. 6082-T6铝合金无减薄搅拌摩擦焊接头组织与性能[J]. 焊接学报, 2022, 43(6): 102 − 107. doi: 10.12073/j.hjxb.20220104001 Li Chong, Tian Yalin, Qi Zhenguo, et al. Microstructure and mechanical properties of non-weld-thinning friction stir welded 6082-T6 aluminum alloy joints[J]. Transactions of the China Welding Institution, 2022, 43(6): 102 − 107. doi: 10.12073/j.hjxb.20220104001
[4] Fonda R W, Bingert J F. Precipitation and grain refinement in a 2195 Al friction stir weld[J]. Metallurgical and Materials Transactions A, 2006, 37(12): 3593 − 3604. doi: 10.1007/s11661-006-1054-2
[5] 陈永来, 李劲风, 张绪虎, 等. 2195铝锂合金摩擦搅拌焊接头组织[J]. 中国有色金属学报, 2016, 26(5): 964 − 972. Chen Yonglai, Li Jinfeng, Zhang Xuhu, et al. Structure of friction-stir welding joint of 2195 Al-Li alloy[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(5): 964 − 972.
[6] 戴翔, 石磊, 武传松, 等. 2195-T6铝锂合金搅拌摩擦焊接头微观组织结构与力学性能[J]. 焊接学报, 2022, 43(6): 25 − 34. doi: 10.12073/j.hjxb.20210524002 Dai Xiang, Shi Lei, Wu Chuansong, et al. Microstructure and mechanical properties of 2195-T6 Al-Li alloy joint prepared by friction stir welding[J]. Transactions of the China Welding Institution, 2022, 43(6): 25 − 34. doi: 10.12073/j.hjxb.20210524002
[7] Zhang J, Feng X, Huang H, et al. Effects of welding parameters and post-heat treatment on mechanical properties of friction stir welded AA2195-T8 Al-Li alloy[J]. Journal of Materials Science & Technology, 2018, 34(1): 219 − 227.
[8] Ma Y E, Xia Z C, Jiang R R, et al. Effect of welding parameters on mechanical and fatigue properties of friction stir welded 2198-T8 aluminum-lithium alloy joints[J]. Engineering Fracture Mechanics, 2013, 114: 1 − 11. doi: 10.1016/j.engfracmech.2013.10.010
[9] Hajjioui E A, Bouchaâla K, Faqir M, et al. A review of manufacturing processes, mechanical properties and precipitations for aluminum lithium alloys used in aeronautic applications[J]. Heliyon, 2023, 9(2): e12565.
[10] Gu C, Yang X, Tang W, et al. Texture features and strengthening mechanisms in welding nugget zone of SSFSWed thick-plate Al-Li alloy joint[J]. Materials Science & Engineering A, 2022, 848: 143459.
[11] Fonda R W, Bingert J F. Microstructural evolution in the heat-affected zone of a friction stir weld[J]. Metallurgical & Materials Transactions A, 2004, 35(5): 1487 − 1499.
[12] 王雷, 王惠苗, 马方园, 等. 2195-T8铝锂合金搅拌摩擦焊接头组织与力学性能[J]. 焊接, 2019(3): 24 − 27. doi: 10.12073/j.hj.20181016006 Wang Lei, Wang Huimiao, Ma Fangyuan, et al. Microstructure and properties of 2195 Al-Li alloy welded joints by friction stir welding[J]. Welding & Joining, 2019(3): 24 − 27. doi: 10.12073/j.hj.20181016006
[13] Tao Y, Ni D R, Xiao B L, et al. Origin of unusual fracture in stirred zone for friction stir welded 2198-T8 Al-Li alloy joints[J]. Materials Science & Engineering: A, 2017, 693(May2): 1-13.
[14] Wang Z L, Wang B B, Zhang Z, et al. A feasible operational parameter window for enhancement of welding speed in friction stir welding of 2195-T8 Al–Li alloy[J]. Science and Technology of Welding and Joining, 2023, 28(8): 679 − 688. doi: 10.1080/13621718.2023.2202039
[15] Tao Y, Zhang Z, Xue P, et al. Effect of post weld artificial aging and water cooling on microstructure and mechanical properties of friction stir welded 2198-T8 Al-Li joints[J]. Journal of Materials Science & Technology, 2022, 123: 92 − 112.
[16] Wen F, Long Z, Xing Z, et al. The effect of laser shock peening on very high cycle fatigue properties of laser welded 2A60 aluminum alloy joints[J]. Engineering Fracture Mechanics, 2023, 290: 109537. doi: 10.1016/j.engfracmech.2023.109537
[17] Wan Z, Guo W, Jia Q, et al. Effects of laser shock peening on microstructure and mechanical properties of TIG welded alloy 600 joints[J]. Material Science and Engineering: A, 2021, 808: 140914. doi: 10.1016/j.msea.2021.140914
[18] Yu P, Wu C, Shi L. Analysis and characterization of dynamic recrystallization and grain structure evolution in friction stir welding of aluminum plates[J]. Acta Materialia, 2021, 207: 116692. doi: 10.1016/j.actamat.2021.116692
[19] Shukla A, Baeslack W. Study of microstructural evolution in friction-stir welded thin-sheet Al–Cu–Li alloy using transmission-electron microscopy[J/OL]. Scripta Materialia, 2007, 56(6): 513 − 516.
[20] Oosterkamp A, Oosterkamp L D, Nordeide A. ‘Kissing Bond' phenomena in solid-state welds of aluminum alloys[J]. Welding Journal, 2004, 83(8): 225s − 231s.
[21] Tayon W A, Domack M S, et al. Texture evolution within the theromechanically affected zone of an Al-Li alloy 2195 friction stir weld[J]. Metallurgy and Materials Transactions : A, 2013, 44(11): 4906-4913.
-
期刊类型引用(2)
1. 关洪星,杨海瑛,毛小南,李磊. TiAl合金钎焊研究进展. 钛工业进展. 2022(06): 43-48 . 百度学术
2. 刘彦峰,代卫丽,邱云云,常亮亮,冯强强. Si含量对Ti-Al-Si合金显微组织和性能的影响. 有色金属工程. 2018(06): 16-20 . 百度学术
其他类型引用(2)