高级检索

00Cr13Ni5Mo不锈钢四钨极电弧增材制造原位热处理组织与力学性能分析

Analysis of in-situ heat treatment on microstructure and mechanical properties by quadruple-electrode gas tungsten arc additive manufacturing of 00Cr13Ni5Mo stainless steel

  • 摘要: 为解决电弧增材制造存在的力学性能各向异性问题,提出一种四钨极热源增材制造技术,利用四钨极超高热输入特点对基于00Cr13Ni5Mo不锈钢的沉积件进行原位热处理,以期实现柱状晶向等轴晶转变过程. 研究了沉积件不同位置的微观组织特征,并通过拉伸试验与冲击试验重点考察了沉积件不同方向、不同位置的力学性能. 结果表明,通过原位热处理可以使沉积件微观组织由柱状晶向等轴晶转变,晶粒平均长度由44.28 μm降低至4.86 μm,从而显著改善沉积件力学性能的各向异性;沉积件微观组织由回火索氏体、回火马氏体、逆变奥氏体及碳化物组成;沉积件的平均硬度为(279.4±10) HV10、室温屈服强度为(903.7±11) MPa、在0 ℃冲击吸收功为(207.6±10) J. 综上所述,沉积件微观组织与力学性能各向异性程度较小,该技术为改善电弧增材制造微观组织与力学性能各向异性提供了一种可行性方案.

     

    Abstract: To solve the problem of anisotropy in mechanical properties of arc additive manufacturing, a four-tungsten-electrode heat source additive manufacturing is proposed. Utilize the ultra-high heat input characteristic of quadruple-electrode gas tungsten arc to conduct in-situ heat treatment on the deposited parts based 00Cr13Ni5Mo stainless steel, in order to achieve the transformation from columnar grains to equiaxed grains.The microstructure characteristics of different positions of the deposited parts are studied, and mechanical properties of the deposited parts in different directions and positions are investigated emphatically through tensile and impact tests. The results show that in-situ heat treatment can transform the microstructure of the deposited parts from columnar grains to equiaxed grains, with the average grain size reducing from 44.28 μm to 4.86 μm, significantly improving the anisotropy of the mechanical properties. The microstructure of the deposited parts consists of tempered sorbite, tempered martensite, inverted austenite, and carbide. The average hardness of the deposited parts is (279.4±10) HV10, the yield strength at room temperature is (903.7±11) MPa, and the impact energy at 0 ℃ is (207.6±10) J. In conclusion, the anisotropy of the microstructure and mechanical properties of the deposited parts is minimal. This technology offers a viable solution for improving the anisotropy of the microstructure and mechanical properties in wire arc additive manufacturing.

     

/

返回文章
返回