高级检索

00Cr13Ni5Mo不锈钢四钨极电弧增材制造原位热处理组织与力学性能分析

周鑫, 黄瑞生, 梁晓梅, 滕彬

周鑫, 黄瑞生, 梁晓梅, 滕彬. 00Cr13Ni5Mo不锈钢四钨极电弧增材制造原位热处理组织与力学性能分析[J]. 焊接学报, 2025, 46(5): 86-93. DOI: 10.12073/j.hjxb.20240202001
引用本文: 周鑫, 黄瑞生, 梁晓梅, 滕彬. 00Cr13Ni5Mo不锈钢四钨极电弧增材制造原位热处理组织与力学性能分析[J]. 焊接学报, 2025, 46(5): 86-93. DOI: 10.12073/j.hjxb.20240202001
ZHOU Xin, HUANG Ruisheng, LIANG Xiaomei, TENG Bin. Analysis of in-situ heat treatment on microstructure and mechanical properties by quadruple-electrode gas tungsten arc additive manufacturing of 00Cr13Ni5Mo stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(5): 86-93. DOI: 10.12073/j.hjxb.20240202001
Citation: ZHOU Xin, HUANG Ruisheng, LIANG Xiaomei, TENG Bin. Analysis of in-situ heat treatment on microstructure and mechanical properties by quadruple-electrode gas tungsten arc additive manufacturing of 00Cr13Ni5Mo stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(5): 86-93. DOI: 10.12073/j.hjxb.20240202001

00Cr13Ni5Mo不锈钢四钨极电弧增材制造原位热处理组织与力学性能分析

基金项目: 

黑龙江省重点研发计划(2022ZX01A09);中国机械科学研究总院集团有限公司技术发展基金项目"激光诱导多钨极电弧同轴增材制造技术"(202210106)

详细信息
    作者简介:

    周鑫,硕士研究生;主要从事激光电弧复合增材制造的科研工作;Email:hwizhouxin@163.com

    通讯作者:

    黄瑞生,博士,正高级工程师;Email:huangrs8@163.com.

  • 中图分类号: TG 444.4

Analysis of in-situ heat treatment on microstructure and mechanical properties by quadruple-electrode gas tungsten arc additive manufacturing of 00Cr13Ni5Mo stainless steel

  • 摘要:

    为解决电弧增材制造存在的力学性能各向异性问题,提出一种四钨极热源增材制造技术,利用四钨极超高热输入特点对基于00Cr13Ni5Mo不锈钢的沉积件进行原位热处理,以期实现柱状晶向等轴晶转变过程. 研究了沉积件不同位置的微观组织特征,并通过拉伸试验与冲击试验重点考察了沉积件不同方向、不同位置的力学性能. 结果表明,通过原位热处理可以使沉积件微观组织由柱状晶向等轴晶转变,晶粒平均长度由44.28 μm降低至4.86 μm,从而显著改善沉积件力学性能的各向异性;沉积件微观组织由回火索氏体、回火马氏体、逆变奥氏体及碳化物组成;沉积件的平均硬度为(279.4±10) HV10、室温屈服强度为(903.7±11) MPa、在0 ℃冲击吸收能量为(207.6±10) J. 综上所述,沉积件微观组织与力学性能各向异性程度较小,该技术为改善电弧增材制造微观组织与力学性能各向异性提供了一种可行性方案.

    Abstract:

    To solve the problem of anisotropy in mechanical properties of arc additive manufacturing, a four-tungsten-electrode heat source additive manufacturing is proposed. Utilize the ultra-high heat input characteristic of quadruple-electrode gas tungsten arc to conduct in-situ heat treatment on the deposited parts based 00Cr13Ni5Mo stainless steel, in order to achieve the transformation from columnar grains to equiaxed grains.The microstructure characteristics of different positions of the deposited parts are studied, and mechanical properties of the deposited parts in different directions and positions are investigated emphatically through tensile and impact tests. The results show that in-situ heat treatment can transform the microstructure of the deposited parts from columnar grains to equiaxed grains, with the average grain size reducing from 44.28 μm to 4.86 μm, significantly improving the anisotropy of the mechanical properties. The microstructure of the deposited parts consists of tempered sorbite, tempered martensite, inverted austenite, and carbide. The average hardness of the deposited parts is (279.4±10) HV10, the yield strength at room temperature is (903.7±11) MPa, and the impact energy at 0 ℃ is (207.6±10) J. In conclusion, the anisotropy of the microstructure and mechanical properties of the deposited parts is minimal. This technology offers a viable solution for improving the anisotropy of the microstructure and mechanical properties in wire arc additive manufacturing.

  • 图  1   增材制造设备示意图

    Figure  1.   Schematic diagram of the additive manufacturing devices. (a) additive manufacturing devices; (b) cross section of the quadruple-electrode gas tungsten torch

    图  2   取样位置示意图

    Figure  2.   Schematic diagram of sampling location

    图  3   原位热处理过程示意图

    Figure  3.   Schematic diagram of the in-situ heat treatment process

    图  4   增材制件不同位置微观组织

    Figure  4.   Microstructure of additive manufacturing sample at different positions

    图  5   沉积件不同位置的EBSD分析

    Figure  5.   EBSD analyses of the additive manufacturing samples at different positions. (a) inverse pole figure of the 40th and 39th; (b) inverse pole figure of the 20th and 19th; (c) grain boundary figure of the 40th and 39th; (d) grain boundary figure of the 20th and 19th; (e) pole figure of the 40th and 39th; (f) pole figure of the 20th and 19th

    图  6   沉积件各位置硬度

    Figure  6.   Hardness of additive manufacturing sample at each positions

    图  7   不同方向的拉伸性能

    Figure  7.   Tensilel properties at different directions

    图  8   不同位置的拉伸性能

    Figure  8.   Tensile properties at different positions

    图  9   不同方向与不同位置的拉伸断口SEM图像

    Figure  9.   SEM figure of fracture surfaces at different directions and different positions. (a) fracture surface of x-direction; (b) fracture surface of y-direction; (c) fracture surface of z-direction; (d) fracture surface of top; (e) fracture surface of middle; (f) fracture surface of bottom

    图  10   拉伸断口夹杂物的EDS元素组成

    Figure  10.   Elemental compositions of fracture surfaces by EDS. (a) test point location; (b) results of element analysis inclusion

    图  11   不同方向的冲击性能

    Figure  11.   Impact performance at different directions

    图  12   不同位置的冲击性能

    Figure  12.   Impact performance at different positions

    表  1   304不锈钢与HS13/5L焊丝化学成分(质量分数,%)

    Table  1   Chimecal compositions of 304 stainless steel and HS13/5L welding wire

    材料CSiMnSPCrNiMoFe
    304不锈钢0.04000.43001.17000.001 40.028 018.05008.08000.0540余量
    HS13/5L焊丝0.01600.46000.54000.008 30.001 912.30004.51000.4800余量
    下载: 导出CSV

    表  2   增材制造工艺参数

    Table  2   Process parameters of additive manufacturing

    焊接电流I/A 送丝速度vs/(m·min−1) 焊接速度v/(mm·min−1) 电弧电压U/V 气流量Q/(L·min−1)
    150 × 4 3 ~ 5 200 ~ 400 14.5 15
    下载: 导出CSV
  • [1]

    Bunty T, Shiva S, Tameshwer N. A review on wire arc additive manufacturing: Processing parameters, defects, quality improvement and recent advances[J]. Materials Today Communications, 2022, 31: 103739. doi: 10.1016/j.mtcomm.2022.103739

    [2]

    Evans S I, Wang J, Qin J, et al. A review of WAAM for steel construction–manufacturing, material and geometric properties, design, and future directions[J]. Structures, 2022, 44: 1506 − 1522. doi: 10.1016/j.istruc.2022.08.084

    [3]

    Gardner L. Metal additive manufacturing in structural engineering – review, advances, opportunities and outlook[J]. Structures, 2023, 47: 2178 − 2193. doi: 10.1016/j.istruc.2022.12.039

    [4]

    Yuan D, Sun X, Sun L, et al. Improvement of the grain structure and mechanical properties of austenitic stainless steel fabricated by laser and wire additive manufacturing assisted with ultrasonic vibration [J]. Materials Science & Engineering: A, 2021, 813: 141177.

    [5]

    Anna E, Jarryd B, Nima R, et al. The influence of laser shock peening on corrosion-fatigue behaviour of wire arc additively manufactured components[J]. Surface and Coatings Technology, 2023, 456: 129262. doi: 10.1016/j.surfcoat.2023.129262

    [6]

    Zhou S, Liu Z, Yang G, et al. Heterostructure microstructure and laves phase evolution mechanisms during inter-layer hammering hybrid directed energy deposition (DED) process[J]. Materials Science and Engineering: A, 2023, 886: 145668. doi: 10.1016/j.msea.2023.145668

    [7]

    Colegrove P A, Coules H E, Fairman J, et al. Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling[J]. Journal of Materials Processing Technology, 2013, 213(10): 1782 − 1791. doi: 10.1016/j.jmatprotec.2013.04.012

    [8]

    Tan C, Li R, Su J, et al. Review on field assisted metal additive manufacturing[J]. International Journal of Machine Tools and Manufacture, 2023, 189: 104032. doi: 10.1016/j.ijmachtools.2023.104032

    [9]

    Chen Y, Zhang X, Ding D, et al. Integration of interlayer surface enhancement technologies into metal additive manufacturing: A review[J]. Journal of Materials Science & Technology, 2023, 165: 94 − 122

    [10]

    Li Y, Wu S, Wang J, et al. Microstructure homogeneity and strength-toughness balance in submerged arc additive manufactured Mn-Ni-Mo high-strength steel by unique intrinsic heat treatment[J]. Journal of Materials Processing Technology, 2022, 307: 117682. doi: 10.1016/j.jmatprotec.2022.117682

    [11]

    Li Y, Wu S, Li H, et al. Submerged arc additive manufacturing (SAAM) of low-carbon steel: Effect of in-situ intrinsic heat treatment (IHT) on microstructure and mechanical properties[J]. Additive Manufacturing, 2021, 46: 102124. doi: 10.1016/j.addma.2021.102124

    [12] 杜兵, 孙凤莲, 徐玉君, 等. 焊接方法对超低碳马氏体不锈钢焊丝熔敷金属冲击韧性的影响[J]. 焊接学报, 2014, 25(8): 1 − 4.

    Du Bing, Sun Feng lian, Xu Yujun, et al. Effect of welding methods on impact toughness of ultra-low carbon martensitic stainless steel welding wire deposited metal[J]. Transactions of the China Welding Institution, 2014, 25(8): 1 − 4

图(12)  /  表(2)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  15
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-30
  • 网络出版日期:  2024-12-29
  • 刊出日期:  2025-05-24

目录

    /

    返回文章
    返回