Research progress in dissimilar material brazing technology and applications
-
摘要:
轻量化、高性能与多功能化是当前制造业的新兴趋势,在该趋势的推动下,材料连接技术逐渐向多材料、混合结构的方向发展,从而显著提升了对异质材料连接的需求. 异质材料连接技术能够充分发挥不同材料的性能优势,满足现代工业对结构轻量化、功能集成化和性能最优化的要求. 然而,异质材料在连接过程中,由于物理、化学和热力学性质的显著差异,容易出现物相不相容、受热不均匀、界面化合物不稳定、残余应力较大等难题. 针对上述问题,文中总结了近年来异质材料钎焊领域的相关研究和应用现状. 首先,从被连接母材的角度出发,介绍了陶瓷与陶瓷基复合材料、高温合金和金刚石3种典型异质材料钎焊问题的研究热点;其次,从连接方法的角度,介绍了熔钎焊等新兴钎焊工艺和技术的发展现状;最后,总结了异质材料钎焊技术的应用以及所面临的关键问题,并对其未来的发展趋势和技术难点进行了展望.
Abstract:Lightweight, high-performance and multifunctional are emerging trends in modern manufacturing. Driven by these trends, material joining technologies are gradually evolving toward multi-material and composite structures, significantly increasing the demand for dissimilar material joining. Dissimilar material joining technologies can fully leverage the performance advantages of different materials, meeting the requirements of modern industry for structural lightweighting, functional integration and performance optimization. However, during the joining of dissimilar materials, significant differences in physical, chemica and thermodynamic properties often lead to challenges, such as phase immiscibility, uneven heating, unstable interfacial compounds and high residual stresses. To address these issues, this paper summarizes recent research and application progress in the field of brazing for dissimilar materials. Firstly, from the perspective of the base materials to be joined, it introduces the research hotspots in brazing three typical types of dissimilar materials, ceramics and ceramic matrix composites, superalloys and diamond. Subsequently, from the perspective of joining methods, it reviews the development status of emerging brazing processes and technologies, such as fusion brazing. Finally, the paper summarizes the applications of dissimilar materials brazing technologies, highlights the key challenges faced and provides an outlook on future development trends and technical difficulties.
-
Keywords:
- dissimilar materials /
- brazing /
- ceramics /
- superalloys /
- diamond
-
0. 序言
激光是一种能量密度大、热输入精准可控的定向高能技术手段,将高能激光束作用在材料表面形成局部高温区,使材料熔化或蒸发,这种由激光辐照导致的材料烧蚀损失为激光切割等提供了新的工艺方法[1-4],其在航空航天、汽车工业等领域受到了广泛关注[5-6].在激光辐照范围内,母材随时间、空间会发生急剧变化,涉及多物理场耦合的复杂传热传质过程.气流环境、工件所处空间位置等外界因素的存在在影响材料去除强度、改变烧蚀速率的同时,进一步加剧了激光烧蚀过程的复杂性和瞬态性[7-11].目前,激光、材料以及周围环境之间的复杂相互作用仍是提高激光切割等工艺效率研究过程中亟需探索的科研难题.
国内外学者针对气流、空间位置等外界环境对激光烧蚀过程的影响进行了广泛地研究.Robin等人[12]研究了超音速横向气流对高功率激光照射不透明固体表面的影响,气流在熔体表面施加剪切应力,导致熔体在区域后缘去除,增加了熔体/固体边界的衰退率. 当静止靶材表面与水平方向成一定夹角时,重力效应可使熔透时间显著缩短[13].王伟平等人[14]发现切向气流和靶面之间的换热量与激光参数、气流参数以及靶参数均相关,气流与靶面的对流换热使激光加热效应所需的能量增加.Qin等人[15]提出了一种激光束传播方向与重力方向相反的向上打孔法,将其与向下打孔法进行对比,发现在重力作用下,材料去除质量提高了2倍以上,且损伤范围增大,提高了打孔效率.袁春等人[16]对比研究了不同气流环境下的激光辐照效应,研究发现,在切向空气气流环境下,氧化反应可促进钢靶温度升高,烧蚀效果最显著;在氮气气流环境下,钢靶有一定的烧蚀;在自然对流环境下,烧蚀效果最差.Wang等人[17]观察到气流的机械侵蚀提高了烧蚀速率,并使烧蚀面变得光滑,其对流冷却效应延缓了背表面温度响应,改变了激光光斑边缘的烧蚀形貌和成分.Yuan等人[18]分别进行了单片高温合金板、未填充夹层板、隔热材料填充夹层板和烧蚀材料填充夹层结构的激光烧蚀试验.结果表明,在高超声速横向气流作用下,烧蚀材料填充夹层结构的抗激光烧蚀性能明显优于其他结构.
合理的数值模型对于研究激光−材料−周围环境的相互作用过程,分析激光烧蚀过程中的温度分布、烧蚀形貌等具有重要意义.杜太焦等人[19]模拟研究目标在激光辐照下的高速运动过程,发现切向气流环境下的对流换热在一定程度上减弱了激光辐照的温升效应.Chen等人[20]对圆柱形密封爆炸装置的激光辐照响应进行了数值模拟,结果表明,与无气流相比,切向气流可显著缩短起爆时间.Huang等人[21]研究发现超音速气流与烧蚀坑不同位置之间的不均匀对流换热作用改变了烧蚀坑的对称形态.随着烧蚀坑的加深,流动模式由闭坑流向开坑流转变,进而显著改变局部流动特性,影响激光烧蚀行为.Wang等人[4]发现在激光切割过程中,熔化材料在重力和辅助气流的影响下向下移动,并将热量传递给底层材料以进一步熔化.Xing等人[22]提出了一个热流固耦合模型,研究亚音速切向气流作用下激光辐照金属板的耦合变形和动态破坏过程.研究发现,气流不仅加速了变形,而且使塑性应变和破裂模式变得不对称.Ma等人[23]建立了一个热−流体−烧蚀耦合数值模型,模拟高速风洞环境下的激光烧蚀,结果表明,激光烧蚀深度与激光功率密度、气流速度等有关.
目前,激光烧蚀过程中的质量损失主要是基于辅助气流展开研究,如不同性质气流环境下的温升差异、不同强度气流环境下的烧蚀速率、不同材料的抗烧蚀性能等方面,很少涉及工件所处空间位置对熔体去除过程的影响,更加缺乏气流与空间位置联合影响诱导熔体去除的研究.文中利用有限元分析方法,明确考虑了气流和所处空间位置的联合作用,建立了能够反映激光能量、表面气流、空间位置和金属材料之间相互作用的数值耦合模型,直接模拟了不同空间位置条件下,亚音速切向气流与大尺度熔池的相互作用过程,结合高速摄像技术,对比研究了空间位置对激光烧蚀过程中气流流动行为及熔体剥离损失的影响,以期对相关领域的研究提供试验数据和理论支撑.
1. 数值模型建立
文中采用有限元软件COMSOL Multiphysics对不同空间位置的亚音速切向气流与大尺度熔池之间的相互作用过程进行了模拟计算,解释了气流和工件所处空间位置等环境因素对激光辐照效应的影响.研究选用低碳钢作为母材,计算过程中所采用材料的主要热物理性能参数见表1.
1.1 激光辐照
在高能激光的辐照下,金属表面温度升高而熔化,假设激光入射方向始终与金属表面相垂直,激光能量呈高斯分布,其热流密度随空间位置分布的函数为[28-30]
$$ I = \frac{{2P}}{{\text{π} {R^2}}}\exp \left( {\frac{{ - 2{r^2}}}{{{R^2}}}} \right) $$ (1) 式中:P为激光功率;R为激光光斑半径;r为金属表面某一点到激光光斑中心的距离.
1.2 热量传输
在激光辐射范围内,母材温度随时间、空间发生急剧变化,可根据能量方程对热量传输过程进行求解[31],能量方程为
$$ \rho {C_{\mathrm{p}}}\left( {\frac{{\partial T}}{{\partial t}} + v \cdot\nabla T} \right) = \nabla \cdot \left( {k\nabla T} \right) + I $$ (2) 式中:$ \rho $,$ {C_{\mathrm{p}}} $,$ k $分别为材料的密度、比热容和热导率;T为温度;t为时间;在固体域内,$ v $为模型部件运动的速度,在该模型中固体域或热源均无移动,因此$ v $ = 0;在流体域中,$ v $为流体速度.
模型中,假设熔体最高温度为
3034 K[32],即材料的蒸发温度,仅考虑对流换热造成的能量损失,不考虑材料的蒸发损失及高速气流带来的气动热,则作用于自由表面的能量通量为$$ k\nabla T = I - h\left( {T - {T_0}} \right) $$ (3) 式中:h为对流换热系数[21];T0为环境温度,设置为293.15 K.
对于其他边界
$$ k\nabla T = - h\left( {T - {T_0}} \right) $$ (4) 1.3 流体流动
将空气及熔池中金属液体视为不可压缩的牛顿流体,其流动由连续性方程和Navier-Stokes方程控制的质量和动量运输描述[33-34],连续性方程和Navier-Stokes方程分别为
$$ \nabla \cdot v = \frac{m}{\rho } $$ (5) $$ \rho \left( {\frac{{\partial v}}{{\partial t}} + \left( {v \cdot \nabla } \right)v} \right)=- \nabla p + \nabla \cdot \left( {\mu \left( {\nabla v + \nabla {v^T}} \right)} \right) + \rho g + $$ $$ \sigma \kappa n + {S_{\mathrm{M}}} $$ (6) 式中:m为质量源项;p为压力;$ \mu $为动态粘度;g为重力加速度;$ \sigma $为表面张力系数;$ \kappa $为气液界面曲率;$ n $为界面的单位法向量;SM为动量源项,即导致熔体剥离的气流的机械侵蚀力.
采用相场法追踪空气、液态金属两不相混合流体的界面[35-36],COMSOL求解公式为
$$ \frac{{\partial \phi }}{{\partial t}} + v \cdot \nabla \phi = \nabla \cdot \left( {\frac{{\gamma \lambda }}{{{\varepsilon ^2}}}} \right) \cdot \nabla \psi $$ (7) $$ \psi = - \nabla \cdot {\varepsilon ^2} \cdot \nabla \phi + \left( {{\phi ^2} - 1} \right) \cdot \phi $$ (8) 式中:$ \phi $为相场变量,模型的空气域中设置为$ \phi = - 1 $,液态金属域中设置为$ \phi = 1 $,分别对应于体积分数$ {V_{\mathrm{f}}} $ = 0和1,其中$ {V_{\mathrm{f}}} = \left( {1 + \phi } \right)/2 $.两相之间的接触角设置为$ \text{π} $;$ \lambda $为混合能量密度;$ \varepsilon $为界面厚度控制参数;$ \gamma $为界面迁移率.
表面张力系数与混合能量密度、界面厚度的关系为
$$ \sigma = \frac{{2\sqrt 2 \lambda }}{{3\varepsilon }} $$ (9) 界面迁移率$ \gamma $决定了Cahn-Hilliard扩散的时间尺度,必须足够大以保持恒定的界面厚度,但仍应保持足够小以使对流项不会被过度抑制,其与界面厚度控制参数$ \varepsilon $与迁移率调整参数$ \chi $密切相关,关系式为
$$ \gamma = \varepsilon {\chi ^2} $$ (10) 1.4 网格划分
网格的划分对保证模型的收敛性和准确性至关重要.激光烧蚀过程中,激光辐照及气固界面附近区域的温度、速度等数据变化梯度大,网格划分较为细密,最小网格单元尺寸设置为0.036 mm,其他区域网格划分较为粗糙,如图1所示,计算域尺寸设置为55 mm × 18 mm,其中材料厚度为6 mm.在网格随固液界面移动而变形过程中,为了防止其过度扭曲,设置一个最小单元质量的值作为网格质量的判据,当单元质量低于此值时,自动对网格进行重新划分.
在图1中,气流沿金属表面切向流入,设为入口边界,空气域其他边界设置为出口边界,出口压力设置为101.325 kPa. 图1中$ \alpha $为金属钢板受激光辐照的表面与水平表面的夹角,钢板的空间位置随$ \alpha $的变化而变化,其值越大,重力沿金属受激光辐照表面的分量越大.调整金属钢板的空间位置使得$ \alpha $分别为90°,60°,30°,采用全耦合方法对不同空间位置的表面气流作用下的激光烧蚀过程进行数值求解.
2. 模型验证与分析
图2为气流作用下激光烧蚀装置系统示意图,系统由光纤激光器、机器人、气流喷嘴、高速摄像机、激光照明器等设备组成,可以实现金属钢板在不同空间位置下的激光烧蚀.在试验过程中,激光入射方向与钢板表面始终保持垂直,以约为40 m/s的气流速度通过位于熔池前方的气流喷嘴,并沿钢板表面切向流入,通过调整钢板空间位置、气流作用方向及激光入射方向,依次开展了$ \alpha $为90°,60°,30°的切向气流作用下激光烧蚀试验.利用高速摄像机,设定
5000 帧/s的采样频率捕捉熔池表面波动和熔体剥离飞溅图像,同时,利用激光照明器为熔池图片采集提供足够的亮度,从而对激光烧蚀全过程进行实时监测.基于钢板在不同空间位置下的激光烧蚀试验观测结果,量化金属烧蚀损失所形成熔坑的尺寸,测得熔坑长度a、熔坑宽度b、熔坑深度c,将熔坑近似为半个椭球体,进而可计算其体积为
$$ V = 1/2 \times 4\text{π} \left( {a/2} \right)\left( {b/2} \right)c/3 $$ (11) 在不同空间位置(试验1:$ \alpha $ = 90°;试验2:$ \alpha $ = 60°;试验3:$ \alpha $ = 30°)条件下,金属钢板激光烧蚀熔坑体积的变化趋势如图3所示. 调整钢板空间位置至$ \alpha $ = 90°,熔体剥离飞溅可形成体积为271.1 mm3的熔坑;当$ \alpha $减小到60°,熔坑体积从271.1 mm3减小到176.1 mm3,比$ \alpha $ = 90°时减小35.04%;当$ \alpha $进一步减小到30°时,熔坑体积减小到130.4 mm3,比$ \alpha $为60°时减小25.95%. 分析发现,当调整钢板空间位置使$ \alpha $逐渐减小时,熔坑体积随之减小,即烧蚀过程中金属质量损失降低,且金属质量损失下降幅度随$ \alpha $的进一步减小有所减缓.
在$ \alpha $为90°时,使用高速摄像机拍摄获得激光烧蚀过程中熔池表面形态演变及熔体剥离飞溅的图像,如图4所示,将其与如图5所示的数值模拟结果进行比较.对比发现,试验与模拟所获得熔体流动及剥离过程基本一致. 在$ \alpha $为90°时,重力作用方向平行于金属受激光辐照表面,在气流侵蚀和重力作用下,熔池表面熔体发生明显波动形成凸起,如图4(a)和图5(a)所示.随后,越来越多的熔体向下移动,在熔池外形成液柱,如图4(b)和图5(b)所示.在气流和重力的持续作用下液柱被拉伸,当液柱变得足够细时,熔体克服表面张力剥离熔池形成飞溅,如图4(c),4(d)和图5(c),5 (d)所示.此外,对比图4(d)所示的试验结果及图5(d)所示的模拟结果,可以发现试验所获得的熔坑长度为9.94 mm,模拟所获得的熔坑长度为10.04 mm,误差仅为1%,二者吻合良好. 以上分析表明所建立的数值模型能够较为准确地反映气流和工件所处空间位置对熔体剥离损失的影响.
3. 结果与讨论
图6至图11分别展示了$ \alpha $为90°,60°,30°时0.3 Ma切向气流作用下,激光烧蚀过程中气流及熔池流动行为的模拟结果.
在图6、图7的5.76 ms时,气流沿金属右侧表面从上方流入,到达熔池上边缘时,以2 ~ 11 m/s的速度作用在熔体表面并推动其向下运动.在图6、图7的9.47 ms时,在气流和重力的联合作用下,熔体被加速且速度分布较为均匀,大量熔体同时获得向下流动的高动量,在金属表面形成约2.4 mm高的凸起.随后,凸起继续向下移动,在表面张力作用下,熔体并未剥离熔池,而是在熔池外形成一个与金属表面呈较大夹角$ \theta $的倾斜液柱,如图6、图7的10.56 ms所示.气流及重力作用方向与液柱几近垂直,在气流与重力的持续作用下,液柱逐渐被拉伸形成仅约0.45 mm厚的细长液柱,且液柱中熔体被加速至1.6 m/s以上,随后高速熔体克服表面张力剥离熔池形成飞溅,如图6、图7的12.27 ms,13.82 ms所示.上述熔体剥离过程表明,须同时满足熔体速度足够大和液柱足够细两个条件才能使得熔体剥离熔池.
将图6、图7与图8、图9进行对比,可以看出,当$ \alpha $减小为60°时,重力沿金属受激光辐照表面的分量减少,熔体的加速进一步依赖于气流的侵蚀作用,因而较$ \alpha $为90°时熔体流速分布较为不均匀,越靠近凸起尖端,熔体流速越大,熔池底部熔体向下流动速度减慢,波动熔体体积减小,金属表面形成约2.1 mm高的凸起,比$ \alpha $为90°时降低12.5%,如图8、图9的5.90 ms所示.这也使得波动熔体对气流的阻碍作用减弱,气流偏转角度减小,进而导致凸起被推出熔池后形成的倾斜液柱与金属表面的夹角$ \theta $减小,如图8、图9的7.78 ms所示.在图8、图9的10.10 ~ 11.00 ms中,液柱熔体被加速至1.5 m/s以上,比$ \alpha $为90°时降低了6.25%,当液柱被拉伸至约0.35 mm厚时,熔体实现剥离.虽然液柱熔体速度较$ \alpha $为90°时低,但其较小的体积使得剥离更早发生.同时由于气流偏转角度较小,液柱被进一步拉伸时更加靠近金属表面.
将图8、图9与图10、图11进行对比,当$ \alpha $减小为30°时,重力沿金属受激光辐照表面的分量进一步减少,熔体的加速几乎全部依赖于气流的作用,波动熔体在金属表面形成仅约1.4 mm高的凸起,比$ \alpha $为60°时降低33.3%,如图10、图11的5.70 ms所示.更小体积的波动熔体被推出熔池,且形成的倾斜液柱与金属表面的夹角$ \theta $进一步减小,如图10、图11的7.79 ms所示.在图10、图11的10.01 ms中,液柱熔体被加速至1.4 m/s以上,比$ \alpha $为60°时降低了6.67%,这使得熔体需要为剥离熔池积累较长时间的动量,因此相比于$ \alpha $为60°时剥离时刻没有明显提前,如图10、图11的10.83 ms所示.
图12和图13总结了表面气流和空间位置联合作用下熔体的剥离过程.在图12中,在气流和重力的联合作用下,大量熔体获得向下流动的高动量,移出熔池后形成一个与金属表面呈大夹角$ \theta $的倾斜液柱,这使得气流及重力在很大程度上作用于液柱表面,液柱被沿金属表面拉伸,当液柱被拉伸得足够细长时,获得高动量的液柱熔体克服表面张力剥离熔池形成飞溅,如图13所示.随着$ \alpha $的减小,重力沿金属受激光辐照表面的分量减少,熔体的加速逐渐依赖于气流的侵蚀作用,液柱熔体流速减慢,且所形成液柱与金属表面的夹角$ \theta $的减小使得气流和重力对液柱表面的作用分量减少,从而导致熔坑尺寸减小、金属损失降低.
4. 结论
(1)建立了一个考虑亚音速切向气流和工件所处空间位置联合作用的激光烧蚀数值模型
(2) 调整金属空间位置使$ \alpha $从90°减小到30°,重力沿金属受激光辐照表面的分量进一步减少,熔体的加速逐渐依赖于气流的侵蚀作用,液柱熔体流速由1.6 m/s减慢至1.4 m/s.当$ \alpha $减小到60°时,较小体积的液柱使得剥离更早发生.当$ \alpha $进一步减小到30°时,低速熔体需积蓄较长时间的动量,剥离时刻提前不明显.
(3) 工件所处空间位置直接影响烧蚀损失.调整金属钢板空间位置,随着$ \alpha $的减小,气流和重力对液柱表面的作用分量减少,激光烧蚀所形成的熔坑尺寸减小,熔池剥离程度和金属质量损失降低.
(4) 气流和金属所处空间位置联合作用诱导熔体去除主要表现在两方面:一方面,熔体获得向下流动的高动量,移出熔池后形成倾斜液柱,液柱熔体被加速;另一方面,液柱被拉伸变得细长,使得熔体易于克服表面张力,最终剥离熔池形成飞溅.
-
图 1 润湿过程开始(780 ℃)和结束(880 ℃)时不同钎料成分在陶瓷表面润湿铺展行为(原子分数,%)[11]
Figure 1. Wetting and spreading behavior of different brazing material compositions on ceramic surfaces at the beginning (780 ℃) and end (880 ℃) of the wetting process. (a) 0%Ti(780 ℃); (b) 0%Ti(880 ℃); (c) 3.40%Ti(780 ℃); (d) 3.40%Ti(880 ℃); (e) 7.28%Ti(780 ℃); (f) 7.28%Ti(880 ℃); (g) 10.73%Ti(780 ℃); (h) 10.73%Ti(880 ℃); (i) 14.8%Ti(780 ℃); (j) 14. 8%Ti(880 ℃); (k) wetting angle size changing with Ti element content in brazing material
图 2 SiC陶瓷/Zr合金接头微观组织[19]
Figure 2. Microstructure of SiC ceramic/Zr alloy joint. (a) brazing temperature
1040 ℃, holding time for 20 min; (b) enlarged area in Fig. 2(a)图 3 Ni/Cu/AgCuNiMn原位合成高镍AgCuNiMn钎料装配示意图[35]
Figure 3. Assembly diagram of Ni/Cu/AgCuNiMn in-situ synthesized high nickel AgCuNiMn brazing material
图 4 不同厚度Ni中间层BNi-2钎料的接头残余应力与抗剪强度[41]
Figure 4. Residual stress and shear strength of joints of BNi-2 brazing material with different thicknesses of Ni interlayer. (a) distribution of residual stresses in brazed joints; (b) influence of Ni interlayer thickness on the shear strength of joints at room temperature and
1000 ℃图 5 GH99/Ti/TiAl接头在970 ℃下钎焊不同时间的界面微观结构[43]
Figure 5. Interface microstructure of GH99/Ti/TiAl joints brazed for different times at 970 ℃. (a) 3 min; (b) 10 min; (c) 20 min; (d) 20 min
图 6 Ni-Cr复合钎料钎焊金刚石形貌[51]
Figure 6. Morphology of brazed diamond with Ni-Cr composite brazing filler metal. (a) 0%Zr; (b) 0.5%Zr; (c)1%Zr; (d) 1.5%Zr
图 7 钎涂层磨损过程[61]
Figure 7. Wear process of brazing coating
图 8 添加不同稀土元素Cu-Sn-Ti钎料的微观组织(质量分数,%)[70]
Figure 8. Microstructure of Cu-Sn-Ti brazing filler metal with different rare earth elements added. (a) no addition of rare earth elements; (b) addition of 10% Cu-La alloy; (c) addition of 10% Cu-Ce alloy; (d) addition of 10% Cu-Nd alloy; (e) microhardness and shear strength of four Cu-Sn-Ti brazing filler metal
图 9 焊缝中间区IMCs形貌[77]
Figure 9. IMCs morphology in the middle zone of the welds. (a) conventional laser brazed joint; (b) rotary laser brazed joint
图 10 在无磁场和交变间歇磁场作用下的铜侧界面SEM[82]
Figure 10. SEM of the copper side interface under no magnetic field and alternating intermittent magnetic field. (a) no magnetic field; (b) alternating intermittent magnetic field
图 11 LFB-TiC接头典型界面[83]
Figure 11. LFB-TiC joint typical interface. (a) interface microstructure; (b) enlarged image of area (b) marked interface; (c) enlarged image of area (c) marked in interface; (d) interface Al element; (e) interface Ti element; (f) interface C element
图 12 Cu/Al管材的MPASSB连接机理[98]
Figure 12. MPASSB joining mechanism of Cu/Al pipe. (a) state of pipe and solder before brazing; (b) oxide film damage and element diffusion; (c) shear rheology and element diffusion; (d) final state
图 13 激光软钎焊在光学组件封装领域应用[102]
Figure 13. Applications of laser soft brazing in the field of optical component packaging
图 14 焊接式PCD刀具[113]
Figure 14. Welding type PCD tool
图 15 镀钛CBN磨粒的焊后形貌[114]
Figure 15. Postweld morphology of titanium plated CBN abrasive particles
表 1 图2(b)中相应点位的EDS结果(原子分数,at.%)[19]
Table 1 EDS results of corresponding points in figure 2 (b)
点 Cr Fe Co Ni Cu Zr Sn 可能相 A 51.03 10.24 1.93 0.90 0.50 35.39 0.01 Zr(Fe, Cr)2 B 0.71 0.41 0.48 0.58 3.15 91.55 3.12 Zr(s, s) C 0.17 0.98 1.79 3.67 26.25 67.12 0.01 Zr2Cu D 5.40 9.61 6.65 6.35 6.35 65.44 0.20 HEAP E 0.83 3.32 3.50 2.35 1.59 69.96 18.46 (Zr, Sn) -
[1] 王佳杰, 宋晓国, 武鹏博, 等. 铝/钛异种金属激光/激光-CMT复合熔钎焊工艺及其组织与力学性能[J]. 焊接学报, 2023, 44(2): 54 − 60. doi: 10.12073/j.hjxb.20220617003 WANG Jiajie, SONG Xiaoguo, WU Pengbo, et al. Process, microstructures and mechanical properties of Al/Ti dissimilar metals with laser/laser-CMT hybrid welding-brazing[J]. Transactions of the China Welding Institution, 2023, 44(2): 54 − 60. doi: 10.12073/j.hjxb.20220617003
[2] 李永兵, 马运五, 楼铭, 等. 轻量化多材料汽车车身连接技术进展[J]. 机械工程学报, 2016, 52(24): 1 − 23. doi: 10.3901/JME.2016.24.001 LI Yongbing, MA Yunwu, LOU Ming, et al. Advances in welding and joining processes of multi-material lightweight car body[J]. Journal of Mechanical Engineering, 2016, 52(24): 1 − 23. doi: 10.3901/JME.2016.24.001
[3] 尹浜兆, 秦瑜, 温鹏, 等. 激光粉末床熔融制备金属骨植入物[J]. 中国激光, 2020, 47(11): 1 − 18. YIN Bangzhao, QIN Yu, WEN Peng, et al. Laser powder bed fusion for fabrication of metal orthopedic implants[J]. Chinese Journal of Lasers, 2020, 47(11): 1 − 18.
[4] 王迪, 邓国威, 杨永强, 等. 金属异质材料增材制造研究进展[J]. 机械工程学报, 2021, 57(1): 186 − 198. doi: 10.3901/JME.2021.01.186 WANG Di, DENG Guowei, YANG Yongqiang, et al. Research progress on additive manufacturing of metal heterogeneous materials[J]. Journal of Mechanical Engineering, 2021, 57(1): 186 − 198. doi: 10.3901/JME.2021.01.186
[5] 钟素娟, 张丽霞, 龙伟民, 等. 异质材料连接研究进展[J]. 电焊机, 2020, 50(9): 118 − 133. doi: 10.7512/j.issn.1001-2303.2020.09.13 ZHONG Sujuan, ZHANG Lixia, LONG Weimin, et al. esearch progress of joining dissimilar materials[J]. Electric Welding Machine, 2020, 50(9): 118 − 133. doi: 10.7512/j.issn.1001-2303.2020.09.13
[6] 冯吉才. 异种材料连接研究进展[J]. 航空学报, 2022, 43(2): 626413. doi: 10.7527/j.issn.1000-6893.2022.2.hkxb202202001 FENG Jicai. Research progress on dissimilar materials joining[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 626413 doi: 10.7527/j.issn.1000-6893.2022.2.hkxb202202001
[7] 宋刚, 赵爽, 李涛涛, 等. 镁合金与钢异质材料焊接的研究进展[J]. 机械工程学报, 2020, 56(8): 1 − 12. doi: 10.3901/JME.2020.08.001 SONG Gang, ZHAO Shuang, LI Taotao, et al. Research progress on welding of magnesium alloy and steel dissimilar materials[J]. Journal of Mechanical Engineering, 2020, 56(8): 1 − 12. doi: 10.3901/JME.2020.08.001
[8] WU X, FU J, WEI S, et al. Bonding mechanisms of SiO2 glass and 1060 Al by ultrasonic assisted active metal soldering process[J]. China Welding, 2023, 32(2): 52 − 62.
[9] 王星星, 吴港, 何鹏, 等. 陶瓷/金属异质钎焊连接研究进展[J]. 稀有金属材料与工程, 2022, 51(7): 2689 − 2697. WANG Xingxing, WU Gang, HE Peng, et al. Research progress of ceramic/metal dissimilar brazing technology[J]. Rare Metal Materials and Engineering, 2022, 51(7): 2689 − 2697.
[10] WU Q, LONG W, ZHANG L, et al. A review on ceramic coatings prepared by laser cladding technology[J]. Optics & Laser Technology, 2024, 176(9): 110993.
[11] SONG X, ZHAO Y, HU S, et al. Wetting of AgCu-Ti filler on porous Si3N4 ceramic and brazing of the ceramic to TiAl alloy[J]. Ceramics International, 2018, 44(5): 4622 − 4629. doi: 10.1016/j.ceramint.2017.11.212
[12] NOMURA M, IWAMOTO C, TANAKA S. Nanostructure of wetting triple line in a Ag-Cu-Ti/Si3N4 reactive system[J]. Acta Materialia, 1999, 47(2): 407 − 413. doi: 10.1016/S1359-6454(98)00375-9
[13] SONG X, CAO J, LI C, et al. Interfacial microstructure and joining properties of TiAl/Si3N4 brazed joints[J]. Materials Science & Engineering: A, 2011, 528(22): 7030 − 7035.
[14] PENG H, ZHANG Y, CHEN X. Microstructure and mechanical properties of C/C composite joint brazed with Ni-based filler[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(3): 927 − 934. doi: 10.1016/S1003-6326(22)65843-6
[15] SUN K, YANG Z, MU R, et al. Active brazing of (HfTaZrNbTi)C high-entropy carbide ceramic and Nb with TiNi composite interlayer: Novel findings on the reaction layer[J]. Materials Characterization, 2023, 203: 113103. doi: 10.1016/j.matchar.2023.113103
[16] LIU G, WANG A, TANG R, et al. Fabrication and modeling of ultra-hard and high-strength B4C-based laminated ceramics by brazing joining[J]. Ceramics International, 2022, 48(19): 27982 − 27987.
[17] XUE P, SI X, LI C. Achieving high-temperature thermal evacuation between dissimilar materials Cf/C and Mo30Cu by forming a brazed joint[J]. Materials Characterization, 2023, 203: 1 − 11.
[18] LIU D, ZOU J, LIU H, et al. Microstructure, mechanical properties and hermeticity of W-Cu/HTCC brazed joints with surface metallization[J]. International Journal of Refractory Metals and Hard Materials, 2024, 118: 106473. doi: 10.1016/j.ijrmhm.2023.106473
[19] LUO Z, WANG G, ZHAO Y, et al. Brazing SiC ceramics and Zr with CoCrFeNiCuSn high entropy alloy[J]. Ceramics International, 2022, 48(16): 23325 − 23333. doi: 10.1016/j.ceramint.2022.04.320
[20] YAO X, ZHAO Y, HUANG Y, et al. A novel CoCrNi medium entropy alloy enhanced AgCuTi composite filler to braze Kovar alloy and sapphire[J]. Materials Characterization, 2023, 197: 112668. doi: 10.1016/j.matchar.2023.112668
[21] ZHU Q, CAI Y, LIU Z, et al. Brazing Al2O3 to 4J42 using Ag-Cu-Ti/Cu/BNi-2 composite fillers with different thicknesses of Cu interlayer[J]. Ceramics International, 2023, 49(6): 9779 − 9788. doi: 10.1016/j.ceramint.2022.11.152
[22] GUO W, LI K, ZHANG H, et al. Low residual stress C/C composite-titanium alloy joints brazed by foam interlayer[J]. Ceramics International, 2022, 48(4): 5260 − 5266. doi: 10.1016/j.ceramint.2021.11.067
[23] WANG Z, JU Z, BUTT H, et al. In situ dispersed carbon fibre network for reinforcing a C/C composite–TC4 alloy brazed joint[J]. Science and Technology of Welding and Joining, 2023, 28(3): 235 − 241. doi: 10.1080/13621718.2022.2146323
[24] LI J X, FU W, SONG X G, et al. Improving the brazing of SiC ceramic by nano-Si3N4 reinforced BNi-2 composite filler prepared by high-shear processing[J]. Materials Letters, 2023, 331: 133452. doi: 10.1016/j.matlet.2022.133452
[25] ZHANG S, LIN J, WANG C, et al. Improvement of microstructure and mechanical properties of Sapphire/Kovar alloy joints brazed with Ag-Cu-Ti composite filler by adding B powders[J]. Journal of Manufacturing Processes, 2023, 99: 243 − 253. doi: 10.1016/j.jmapro.2023.05.050
[26] SUN Q, YANG L, YANG W, et al. Microstructure evolution and bonding mechanism of ZrO2 ceramic and Ti-6Al-4V alloy joints brazed by Bi2O3-B2O3-ZnO glass paste[J]. Journal of the European Ceramic Society, 2022, 42(13): 5953 − 5963. doi: 10.1016/j.jeurceramsoc.2022.06.016
[27] 陈席国, 姜文雍, 王胜. 陶瓷-金属钎焊接头残余热应力研究进展[J]. 南方农机, 2024, 55(3): 131 − 137. CHEN Xiguo, JIANG Wenyong, WANG Sheng. Research progress on residual thermal stress in ceramic metal brazed joints[J]. China Southern Agricultural Machinery, 2024, 55(3): 131 − 137. (in Chinese)
[28] LU Q, HUANG J, DING Z, et al. Enhanced mechanical properties of TZM joint brazed at high temperature using Mo-Ni filler metal with Boron addition[J]. Welding in the World, 2024, 68(9): 2501 − 2509. doi: 10.1007/s40194-024-01783-9
[29] LIU D, XU J, LI X, et al. Influence of Al foil interlayer on performance of vacuum diffusion bonding joint of 6061 aluminium alloy[J]. Journal of Iron and Steel Research International, 2024, 31(10): 2404 − 2412. doi: 10.1007/s42243-024-01302-6
[30] 刘红亮. GH4738/GH3536异种合金钎焊连接及焊后热处理的工艺与机理研究[D]. 北京: 北京科技大学, 2024. LIU Hongliang. Process and mechanism related to the brazing cycle and postbrazing heat treatment of the GH4738/GH3536 dissimilar superalloys[D]. Beijing, China: University of Science and Technology Beijing, 2024.
[31] 叶晓凤, 王宇, 张恒泉, 等. Al2O3陶瓷/AgCuTi/GH99高温合金的钎焊接头力学性能[J]. 稀有金属材料与工程, 2018, 47(11): 3564 − 3570. YE Xiaofeng, WANG Yu, ZHANG Hengquan, et al. Mechanical properties of alumina ceramic/AgCuTi/GH99 superalloy brazed joints[J]. Rare Metal Materials and Engineering, 2018, 47(11): 3564 − 3570.
[32] 辛成来, 李宁, 颜家振. Al2O3陶瓷Ti + Nb/Mo金属化对其与Kovar合金钎焊连接的组织和力学性能的影响[J]. 焊接学报, 2018, 39(9): 45 − 48. XIN Chenglai, LI Ning, YAN Jiazhen. Investigation of brazing joints of Al2O3 ceramics to Kovar alloys by Ti + Nb/Mo metallization[J]. Transactions of the China Welding Institution, 2018, 39(9): 45 − 48.
[33] 兰亮. Si3N4陶瓷与镍基高温合金的部分瞬间液相扩散工艺与机理的研究[D]. 上海: 上海大学, 2017. LAN Liang. Joining process and bonding mechanism of Si3N4/nickel-based superalloy joints by partial transient liquid phase bonding[D]. Shanghai, China: Shanghai University, 2017.
[34] WANG J, XIONG Q, WANG J, et al. Microstructure and mechanical properties of YG8/IN718 alloy joints prepared by vacuum brazing[J]. Vacuum, 2019, 169: 108942. doi: 10.1016/j.vacuum.2019.108942
[35] LIU P, ZHONG S, PEI Y, et al. Study on brazing WC-6Co/In718 with in-situ synthesis of Ni/Cu/AgCuNiMn solder[J]. Materials Science and Technology, 2023, 39(16): 2456 − 2463. doi: 10.1080/02670836.2023.2205774
[36] 乔瑞林, 龙伟民, 秦建, 等. YG8/GH4169异种材料钎焊接头残余应力的数值模拟[J]. 焊接学报, 2024, 45(3): 68 − 74. doi: 10.12073/j.hjxb.20230520001 QIAO Ruilin, LONG Weimin, QIN Jian, et al. Numerical simulation of residual stress in YG8/GH4169 dissimilar material brazed joints[J]. Transactions of the China Welding Institution, 2024, 45(3): 68 − 74 doi: 10.12073/j.hjxb.20230520001
[37] QIAO R, QIN J, ZHANG G, et al. Study on the influence of surface nickel plating on the microstructure and mechanical properties of WC-8Co/Inconel 718 brazed joints[J]. Journal of Materials Science, 2024, 59: 6525 − 6536. doi: 10.1007/s10853-024-09335-8
[38] 朱凯涛, 董多, 杨晓红, 等. GH4169/BNi-7钎焊接头的显微组织、力学性能和腐蚀行为[J]. 材料导报, 2024, 38: 1 − 17. doi: 10.11896/cldb.23100078 ZHU Kaitao, DONG Duo, YANG Xiaohong, et al. Microstructure, mechanical properties and corrosion behavior of GH4169/BNi-7 brazed joint[J]. Materials Reports, 2024, 38: 1 − 17. doi: 10.11896/cldb.23100078
[39] LI S , DU D , ZHANG L, et al. A review on filler materials for brazing of carbon-carbon composites[J]. Reviews on Advanced Materials Science, 2021, 60(1): 92-111.
[40] XIA Y, MA Z, DU Q, et al. Microstructure and properties of the TiAl/GH3030 dissimilar joints vacuum-brazed with a Ti-based amorphous filler metal[J]. Materials Characterization, 2024, 207: 113520. doi: 10.1016/j.matchar.2023.113520
[41] BA J, JI X, WANG B, et al. In-situ alloying of BNi2 + Ni interlayer for brazing C/C composites and GH3536 Ni-based superalloy[J]. Journal of Manufacturing Processes, 2021, 67: 52 − 55. doi: 10.1016/j.jmapro.2021.04.061
[42] 杨佳, 张勋业, 马广璐, 等. SiCf/SiC复合材料与镍基高温合金钎焊接头的组织及性能[J]. 机械工程学报, 2021, 57(12): 161 − 168. doi: 10.3901/JME.2021.12.161 YANG Jia, ZHANG Xunye, MA Guanglu, et al. Microstructure and properties of brazed joint between SiCf/SiC composite and Ni-based superalloy[J]. Journal of Mechanical Engineering, 2021, 57(12): 161 − 168. doi: 10.3901/JME.2021.12.161
[43] LI H, WEI H, HE P, et al. Effects of alloying elements in GH99 superalloy on microstructure evolution of reactive brazing TiAl/GH99 joints[J]. Intermetallics, 2013, 34: 69 − 74. doi: 10.1016/j.intermet.2012.11.008
[44] SUN B, XIAO B, LIU S. Microstructure and performance of diamond abrasive grains brazed in mesh belt furnace with ammonia dissociating atmosphere[J]. International Journal of Refractory Metals and Hard Materials, 2016, 60: 154 − 159. doi: 10.1016/j.ijrmhm.2016.07.016
[45] LONG W, LIU D, DONG X, et al. Laser power effects on properties of laser brazing diamond coating[J]. Surface Engineering, 2020, 36: 1315 − 1326. doi: 10.1080/02670844.2020.1758292
[46] LI M, CHEN J, LIN Q, et al. Interfacial microstructures and mechanical integrity of synthetic diamond brazed by a low-temperature Cu-Sn-Cr filler alloy[J]. Diamond and Related Materials, 2019, 97: 107440. doi: 10.1016/j.diamond.2019.107440
[47] DU Q, WANG X, ZHANG S, et al. Research status on surface metallization of diamond[J]. Materials Research Express, 2019, 6(12): 122005.
[48] ZHANG L, LIU Z. Inhibition of intermetallic compounds growth at Sn–58Bi/Cu interface bearing CuZnAl memory particles (2–6 μm)[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(3): 2466 − 2480. doi: 10.1007/s10854-019-02784-x
[49] ZHANG S, XU X, LIN T, et al. Recent advances in nano-materials for packaging of electronic devices[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(15): 13855 − 13868. doi: 10.1007/s10854-019-01790-3
[50] XU Q, ZHANG J, MAO C, et al. Cu-induced enhancement of interfacial bonding for brazed diamond grits with NiCr filler alloys[J]. International Journal of Refractory Metals and Hard Materials, 2022, 106: 105874. doi: 10.1016/j.ijrmhm.2022.105874
[51] CUI B, WANG P, ZHAO W, et al. Adding Zr element to improve the strength and mechanical properties of diamond vacuum-brazed with Ni-Cr boron-free filler alloy[J]. Diamond and Related Materials, 2023, 133: 109722. doi: 10.1016/j.diamond.2023.109722
[52] WANG P, ZHANG L, CHENG Z, et al. Effect of Y on interface characteristics and mechanical properties of brazed diamond with NiCr filler alloy[J]. Diamond and Related Materials, 2023, 132: 109645. doi: 10.1016/j.diamond.2022.109645
[53] FENG S, JIN T, WANG B, et al. Microstructure and properties of brazed diamond with Pr-modified NiCr filler metals[J]. Diamond and Related Materials, 2023, 138: 110224. doi: 10.1016/j.diamond.2023.110224
[54] WANG N, JIN T, SUN H, et al. Exploring the trace rare earth Sm on the microstructure and mechanical performance of brazed diamonds by Ni-Cr filler alloy[J]. Journal of Materials Research and Technology, 2023, 26: 315 − 327. doi: 10.1016/j.jmrt.2023.07.201
[55] LONG W, LU Q, ZHONG S, et al. Research on interface structure and performance of diamond brazed coating based on non-vacuum environment[J]. Welding in the World, 2022, 66(5): 1043 − 1052. doi: 10.1007/s40194-022-01259-8
[56] 龙伟民, 刘大双, 张冠星, 等. 感应钎涂粉末熔融及传热机制[J]. 焊接学报, 2021, 42(11): 29 − 34. doi: 10.12073/j.hjxb.20210916001 LONG Weimin, LIU Dashuang, ZHANG Guanxing, et al. Melting and heat transfer mechanism of powder by induction brazing coating[J]. Transactions of the China Welding Institution, 2021, 42(11): 29 − 34. doi: 10.12073/j.hjxb.20210916001
[57] 龙伟民, 秦建, 路全彬, 等. 旋耕刀感应钎涂层热处理工艺研究[J]. 材料导报, 2022, 36(7): 98 − 102. doi: 10.11896/cldb.21090163 LONG Weimin, QIN Jian, LU Quanbin, et al. Heat treatment process of induction braze coating of rotary blades[J]. Materials Reports, 2022, 36(7): 98 − 102. doi: 10.11896/cldb.21090163
[58] 龙伟民, 刘大双, 王博, 等. 铝微粉对大气环境感应钎涂金刚石涂层性能影响[J]. 焊接学报, 2021, 42(12): 67 − 71. doi: 10.12073/j.hjxb.20210917002 LONG Weimin, LIU Dashuang, WANG Bo, et al. Effect of aluminum powder on properties of induction braze coated diamond layers in atmospheric environment[J]. Transactions of the China Welding Institution, 2021, 42(12): 67 − 71. doi: 10.12073/j.hjxb.20210917002
[59] 龙伟民, 刘大双, 吴爱萍, 等. 金刚石粒度及添加量对大气环境感应钎涂层耐磨性的影响[J]. 机械工程学报, 2023, 59(12): 225 − 235. doi: 10.3901/JME.2023.12.225 LONG Weimin, LIU Dashuang, WU Aiping, et al. Influence of size and content on the wear resistance of induction brazing diamond coating in air[J]. Journal of Mechanical Engineering, 2023, 59(12): 225 − 235. doi: 10.3901/JME.2023.12.225
[60] ZHANG L, LONG W, DU D, et al. The microstructure and wear properties of diamond composite coatings on TC4 made by induction brazing[J]. Diamond and Related Materials, 2022, 125: 109032. doi: 10.1016/j.diamond.2022.109032
[61] 司浩, 秦建, 钟素娟, 等. 感应加热金刚石/镍基复合涂层微观组织与性能[J]. 稀有金属材料与工程, 2023, 52(3): 1027 − 1035. SI Hao, QIN Jian, ZHONG Sujuan, et al. Microstructure and properties of diamond/Ni-based composite coatings by induction heating[J]. Rare Metal Materials and Engineering, 2023, 52(3): 1027 − 1035.
[62] LONG Weimin, LIU Dashuang, QIN Jian, et al. Wear resistance of laser brazing diamond coating with and without pre-machining V-groove on diamond surface[J]. Journal of Adhesion Science and Technology, 2023, 37(2): 319 − 333. doi: 10.1080/01694243.2022.2033025
[63] 伍俏平, 罗舟, 邓朝晖, 等. 两种合金化铜基钎料真空钎焊金刚石[J]. 材料热处理学报, 2018, 39(3): 151 − 166. WU Qiaoping, LUO Zhou, DENG Chaohui, et al. Vacuum brazing of diamonds with two kinds of alloying copper-based filler metals[J]. Transactions of Materials and Heat Treatment, 2018, 39(3): 151 − 166.
[64] 龙伟民, 乔培新, 王海滨, 等. 粉末合成钎料的探讨[J]. 机械工程学报, 2001(10): 107 − 108. doi: 10.3321/j.issn:0577-6686.2001.10.024 LONG Weimin, QIAO Peixin, WANG Haibin, et al. Discussion of powder synthetic filler materials[J]. Journal of Mechanical Engineering, 2001(10): 107 − 108. doi: 10.3321/j.issn:0577-6686.2001.10.024
[65] 龙伟民, 李胜男, 都东, 等. 钎焊材料形态演变及发展趋势(英文)[J]. 稀有金属材料与工程, 2019, 48(12): 3781 − 3790. LONG Weimin, LI Shengnan, DU Dong, et al. Morphological evolution and development trend of brazing materials[J]. Rare Metal Materials and Engineering, 2019, 48(12): 3781 − 3790.
[66] 龙伟民, 郝庆乐, 傅玉灿, 等. 金刚石工具钎焊用连接材料研究进展[J]. 材料导报, 2020, 34(23): 23138 − 23144. doi: 10.11896/cldb.20100102 LONG Weimin, HAO Qingle, FU Yucan, et al. Research progress of filler metals for brazing diamond tools[J]. Materials Reports, 2020, 34(23): 23138 − 23144. doi: 10.11896/cldb.20100102
[67] LI H, LI K, FAN Y, et al. Influence of brazing temperature on interfacial reaction layer characteristics of Cu-Sn-Ti/diamond composites[J]. Diamond and Related Materials, 2022, 128: 109276. doi: 10.1016/j.diamond.2022.109276
[68] CUI B, ZHAO W, ZUO R, et al. The abrasion resistance of brazed diamond using Cu–Sn–Ti composite alloys reinforced with boron carbide[J]. Diamond and Related Materials, 2022, 124: 108926. doi: 10.1016/j.diamond.2022.108926
[69] CUI B, LIU Z, ZUO R, et al. Microstructure and mechanical properties of vacuum brazed diamond abrasive segments with zirconium carbide reinforced Cu-based active filler metals[J]. Diamond and Related Materials, 2022, 126: 109091. doi: 10.1016/j.diamond.2022.109091
[70] CUI B, ZHAO W, ZUO R, et al. Effect of rare earth alloy addition on the microstructure and abrasion resistance of brazed diamonds with Cu-Sn-Ti filler metal[J]. Diamond and Related Materials, 2022, 126: 109110. doi: 10.1016/j.diamond.2022.109110
[71] 李良安. 高频感应加热制作钎焊金刚石磨头的研究[D]. 青岛: 青岛科技大学, 2019. LI Liang'an. Research on brazed diamond grinding head made by high-frequency induction heating[D]. Qingdao, China: Qingdao University of Science and Technology, 2019.
[72] PATEL H A, MUKHOPADHYAY P, GHOSH S, et al. The effect of temperature and dwell time on diamond-WC brazed joint quality using low-melting point active Ag-Cu-In alloy[J]. Diamond and Related Materials, 2023, 139: 110308. doi: 10.1016/j.diamond.2023.110308
[73] ZHU H, QIN J, SONG X, et al. Research on laser brazing diamond coating process based on temperature field finite element simulation and machine learning[J]. Diamond & Related Materials, 2024, 149: 11647.
[74] XIN C, ZHAO X, GENG H, et al. Microstructure, grain and nanowire growth during selective laser melting of Ag-Cu/diamond composites[J]. RSC Advances, 2023, 13(6): 3448 − 3458. doi: 10.1039/D2RA05965G
[75] LI Y, YANG N, FAN D, et al. Effect of Fe2O3 nanoparticle on the interface microstructure and properties of Al/Cu plasma arc fusion-brazing joints[J]. China Welding, 2023, 32(3): 10 − 20.
[76] DING K, HU T, WU T, et al. Role of the position of the laser spot in the failure transition during the tensile test for the laser welding-brazing of galvanized CRRA1000 steel to 5754 aluminum alloy in an overlapped joint[J]. Materials Science and Engineering: A, 2023, 880: 145314. doi: 10.1016/j.msea.2023.145314
[77] XIE J, CAI C, ZHANG B, et al. Microstructure evolution and fracture behavior of rotating laser welded-brazed 6061 aluminum alloys/304 SS dissimilar joint[J]. Materials Characterization, 2023, 195: 112543. doi: 10.1016/j.matchar.2022.112543
[78] WANG L, MA Y, XU J. Numerical simulation of arc-droplet-weld pool behaviors during the external magnetic field-assisted MIG welding-brazing of aluminum to steel[J]. International Journal of Thermal Sciences, 2023, 194: 108530. doi: 10.1016/j.ijthermalsci.2023.108530
[79] 王秋影, 邱培现, 孙进发, 等. 超声振动辅助铝/钢激光-MIG熔钎焊外观成形、组织以及拉伸性能研究[J]. 精密成形工程, 2023, 15(5): 123 − 130. WANG Qiuying, QIU Peixian, SUN Jinfa, et al. Forming, microstructure and tensile properties of aluminum/steel joint by ultrasonic vibration assisted laser-MIG welding-brazing[J]. Journal of Netshape Forming Engineering, 2023, 15(5): 123 − 130.
[80] 单琪, 张超, 谢鹏, 等. 铝合金与镀铜钢CMT熔钎焊技术研究[J]. 热加工工艺, 2024, 53(1): 48 − 52. SHAN Qi, ZHANG Chao, XIE Peng, et al. Research on CMT welding-brazing technology of aluminum alloy and copper plated steel[J]. Hot Working Process, 2024, 53(1): 48 − 52.
[81] 邓呈敏. 铝/铜异种材料激光熔钎焊技术及接头腐蚀行为研究[D]. 北京: 北京石油化工学院, 2023. DENG Chengmin. Study on laser fusion brazing technology of aluminium/copper dissimilar materials and the corrosion behavior of the joint[D]. Beijing, China: Institute of Petrochemical Technology, 2023.
[82] 王龙, 胡德安, 陈益平, 等. 交变磁场对MIG熔钎焊铝铜接头组织性能的影响[J]. 稀有金属, 2022, 46(12): 1657 − 1662. WANG Long, HU Dean, CHEN Yiping, et al. Microstructure and properties of MIG welding-brazing aluminum copper joint with alternating magnetic field[J]. Chinese Journal of Rare Metals, 2022, 46(12): 1657 − 1662.
[83] LI Y, TANG X, LU F, et al. Dual beam laser fusion-brazed Ti6Al4V/AA7075 dissimilar lap joint: Crack inhibition via inoculation with TiC nanoparticles[J]. Materials Characterization, 2022, 191: 112127. doi: 10.1016/j.matchar.2022.112127
[84] HE H, LIU Z, ZHANG L, et al. Dissimilar CMT joining of aluminum to Ti-Ni-Hf shape memory alloy with Al-Si filler[J]. Journal of Materials Research and Technology, 2023, 24: 8635 − 8643. doi: 10.1016/j.jmrt.2023.05.108
[85] 龙伟民, 张冠星, 张青科, 等. 钎焊过程原位合成高强度银钎料[J]. 焊接学报, 2015, 36(11): 1 − 4. LONG Weimin, ZHANG Guanxing, ZHANG Qingke, et al. In-situ synthesis of high strength Ag brazing filler metals during brazing process[J]. Transactions of the China Welding Institution, 2015, 36(11): 1 − 4.
[86] LONG W, ZHANG G, ZHANG Q. In situ synthesis of high strength Ag brazing filler metals during induction brazing process[J]. Scripta Materialia, 2015, 110: 41 − 43.
[87] LU Q, LONG W, ZHONG S, et al. TZM/graphite interface behavior in high-temperature brazing by Ti-based brazing filler materials[J]. Welding in the World, 2020, 64(11): 1877 − 1885. doi: 10.1007/s40194-020-00967-3
[88] 杨浩哲, 裴夤崟, 沈元勋, 等. ZrCuNi中间层瞬间液相焊扩散连接纯钛TA2工艺研究[J]. 电焊机, 2023, 53(4): 81 − 89. YANG Haozhe, PEI Yinyin, SHEN Yuanxun, et al. Study on transient liquid phase bonded of CP-Ti TA2 joint with ZrCuNi interlayer[J]. Electric Welding Machine, 2023, 53(4): 81 − 89.
[89] XU B, HUANG P, JIANG Q, et al. Joining of graphite to Mo using Ti/Cu and Ti/Cu/Nb/Ti/Cu foils[J]. Science and technology of welding and joining, 2023, 28(9): 974 − 982. doi: 10.1080/13621718.2023.2255767
[90] HOU Z, ZHAO X, GU Y, et al. Enhancement mechanism of Te doping on microstructure, wettability and mechanical properties of Sn-Bi-based solder[J]. Materials Science and Engineering: A, 2022, 848: 143445. doi: 10.1016/j.msea.2022.143445
[91] ZHANG S, ZHAO G, ZHANG C, et al. Microstructure characteristics and mechanical properties of TiAl alloy joint brazed with CoCuFeNiTi1.2V0.4 high entropy alloy filler[J]. Intermetallics, 2023, 162: 108043. doi: 10.1016/j.intermet.2023.108043
[92] ZHAO S, CHEN H Y, NAI X, et al. Effect of Ti content on microstructure and mechanical properties of SiCf/SiC composites/GH536 superalloy joints brazed with CoFeCrNiCuTi high entropy filler[J]. Journal of Manufacturing Processes, 2023, 85: 132 − 140. doi: 10.1016/j.jmapro.2022.11.045
[93] YANG J, BAO L, LONG W, et al. Microstructure and properties analysis of the brazing alloy prepared from recycled E-waste[J]. Frontiers in Chemistry, 2022, 10: 103855.
[94] 高华, 程志, 李炎秋, 等. 不同钎料对YG16硬质合金/35CrMo钢钎焊接头组织与性能的影响[J]. 轨道交通材料, 2023, 2(4): 12 − 18. GAO Hua, CHENG Zhi, LI Yanqiu, et al. Influence of different brazing filler metals on microstructure and properties of YG16 hard metal/35CrMo brazing joint[J]. Materials for Rail Transportation System, 2023, 2(4): 12 − 18.
[95] 高泽, 刘博, 郑立彦, 等. 硬质合金与结构钢钎焊结构低温力学性能试验[J]. 南京航空航天大学学报, 2022, 54(3): 404 − 410. GAO Ze, LIU Bo, ZHENG Liyan, et al. Experiment of low temperature mechanical properties for brazing structure of hard alloy steel and structural steel[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(3): 404 − 410.
[96] HABIBI F, SAMADI A, NOURI M. Microstructural evolution during low-temperature brazing of WC-Co cemented carbide to AISI 4140 steel using a silver-based filler alloy[J]. International Journal of Refractory Metals and Hard Materials, 2023, 116: 106354.
[97] TILLMANN W, ULITZKA T, DAHL L, et al. Application of nickel plating by galvanization on steel surface of brazed cemented carbide-maraging steel joints[J]. Welding in the World, 2023, 67(5): 1313 − 1324. doi: 10.1007/s40194-022-01461-8
[98] HUANG S, RUI Z, XIE Z. Mechanism of oxide film removal and analysis of diffusion behavior of interfacial elements during magnetic pulse-assisted semi-solid brazing[J]. Journal of Materials Processing Technology, 2023, 318: 118030. doi: 10.1016/j.jmatprotec.2023.118030
[99] 王禾, 周健, 戴岚, 等. 基于陶瓷基板微系统T/R组件的焊接技术研究[J]. 电子与封装, 2023, 23(11): 43 − 50. WANG He, ZHOU Jian, DAI Lan, et al. Research on welding technology for micro-system T/R components based on ceramic substrates[J]. Electronics & Packaging, 2023, 23(11): 43 − 50.
[100] 程东锋, 胡晓宇, 周达, 等. 相控阵雷达T/R模块封装复合材料现状及发展趋势[J]. 复合材料学报, 2023, 40(8): 4440 − 4459. CHENG Dongfeng, HU Xiaoyu, ZHOU Da, et al. Research status and development trend of composite materials for phased array radar T/R module packaging[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4440 − 4459.
[101] 刘佳欣, 彭洋, 胡剑雄, 等. 耐高温微系统气密封装技术及高温可靠性研究[J]. 中国科学: 信息科学, 2023, 53(4): 803 − 814. LIU Jiaxin, PENG Yang, HU Jianxiong, et al. High-temperature microsystem packaging technology and high-temperature reliability[J]. Scientia Sinica(Informationis), 2023, 53(4): 803 − 814.
[102] 彭必荣, 肖华, 欧阳忠华, 等. 激光软钎焊在微电子焊接领域的应用及发展[J]. 电焊机, 2023, 53(10): 65 − 70. doi: 10.7512/j.issn.1001-2303.2023.10.10 PENG Birong, XIAO Hua, OUYANG Zhonghua, et al. Application and development of laser soldering in microelectronic welding[J]. Electric Welding Machine, 2023, 53(10): 65 − 70. doi: 10.7512/j.issn.1001-2303.2023.10.10
[103] 刘嘉希. 铝铜软钎焊用Sn-Zn-Bi基无铅钎料性能研究[D]. 大连: 大连理工大学, 2016. LIU Jiaxi. Study on properties of Sn-Zn-Bi based lead-free solders for soldering Al and Cu[D]. Dalian, China: Dalian University of Technology, 2016.
[104] 陈晨, 张亮, 王曦, 等. Zn-Al系钎焊材料的研究进展[J]. 材料导报, 2023, 37(22): 138 − 150. CHEN Chen, ZHANG Liang, WANG Xi, et al. Research progress on Zn-Al based brazing materials[J]. Materials Reports, 2023, 37(22): 138 − 150.
[105] 龙伟民, 赵月, 钟素娟, 等. 铜/铝异质钎焊连接界面金属间化合物的研究进展(英文)[J]. 稀有金属材料与工程, 2021, 50(1): 7 − 13. LONG Weimin, ZHAO Yue, ZHONG Sujian, et al. Research progress on intermetallic compounds in copper-aluminum brazed joints[J]. Rare Metal Materials and Engineering, 2021, 50(1): 7 − 13.
[106] JI F, XUE S, DAI W. Effects of Ti on the brazability of Zn-22Al-xTi filler metals as well as properties of Cu/Al brazing joints[J]. Rare Metal Materials and Engineering, 2013, 42(12): 2453 − 2457. doi: 10.1016/S1875-5372(14)60037-0
[107] 曾勇谋, 刘莹, 曹宇, 等. 人造金刚石精密刀具钎焊工艺及切削磨损研究[J]. 超硬材料工程, 2023, 35(3): 16 − 20. doi: 10.3969/j.issn.1673-1433.2023.03.005 ZENG Yongmou, LIU Ying, CAO Yu, et al. Research on brazing technology and cutting wear of synthetic diamond precision tool[J]. Superhard Materials Engineering, 2023, 35(3): 16 − 20. doi: 10.3969/j.issn.1673-1433.2023.03.005
[108] 陈刚, 邓人钦, 薛伟, 等. 硬质合金与钢焊接的研究进展[J]. 材料导报, 2022, 36(22): 249 − 257. CHEN Gang, DENG Renqin, XUE Wei, et al. Research progress of welding between cemented carbide and steel[J]. Acta Materiae Compositae Sinica, 2022, 36(22): 249 − 257.
[109] 刘建设, 汪曙光, 王良文, 等. 中国超硬材料合成装备技术发展路径综述[J]. 超硬材料工程, 2024, 36(1): 41 − 49. doi: 10.3969/j.issn.1673-1433.2024.01.011 LIU Jianshe, WANG Shuguang, WANG Liangwen, et al. A review on development path of super-hard material synthetic equipment and technology in China[J]. Superhard Materials Engineering, 2024, 36(1): 41 − 49. doi: 10.3969/j.issn.1673-1433.2024.01.011
[110] 罗蒙丽. 硬质合金钎焊技术的现状与发展[J]. 硬质合金, 2015, 32(2): 108 − 118. LUO Mengli. Current status and development of brazing technology cemented carbide[J]. Cemented Carbides, 2015, 32(2): 108 − 118.
[111] 张冠星, 钟素娟, 沈元勋, 等. 梯度三明治钎料钎焊过程组织演变及力学性能分析[J]. 焊接学报, 2023, 44(9): 37 − 43. doi: 10.12073/j.hjxb.20221020001 ZHANG Guanxing, ZHONG Sujian, SHEN Yuanxun, et al. Research on microstructure evolution and mechanical properties of gradient sandwich filler metal during brazing[J]. Transactions of the China Welding Institution, 2023, 44(9): 37 − 43. doi: 10.12073/j.hjxb.20221020001
[112] 邵国栋, 史振宇. 钎焊金刚石磨粒钻钻削C/SiC陶瓷基复合材料孔时切屑对钻削过程的影响[J]. 金刚石与磨料磨具工程, 2022, 42(3): 348 − 355. SHAO Guodong, SHI Zhenyu. Effect of chips on drilling process when drilling C/SiC ceramic matrix composite holes with brazed diamond abrasive drill[J]. Diamond & Abrasives Engineering, 2022, 42(3): 348 − 355.
[113] 朱袁琦. PCD刀具高频感应钎焊温度场研究[D]. 大连: 大连理工大学, 2019. ZHU Yuanqi. Research on PCD tool's temperature field during hi-frequency induction brazing[D]. Dalian, China: Dalian University of Technology, 2019.
[114] 王君临. 应用于奥氏体耐热铸钢加工的钎焊CBN磨具的研究[D]. 南京: 南京航空航天大学, 2021. WANG Junlin. Research on brazed CBN grinding tool applied to austenitic heat resistant cast steel[D]. Nanjing, China: Nanjing University of Aeronautics and Astronautics, 2021.
[115] 王者, 王梦潇, 丁坤英. 民航发动机深度维修技术发展与展望[J]. 航空维修与工程, 2023(7): 24 − 29. doi: 10.3969/j.issn.1672-0989.2023.07.007 WANG Zhe, WANG Mengxiao, DING Kunying. The development and outlook of civil aviation engine depth maintenance technology[J]. Aviation Maintenance & Engineering, 2023(7): 24 − 29. doi: 10.3969/j.issn.1672-0989.2023.07.007
[116] 卓义民, 陈远航, 杨春利. 航空发动机叶片焊接修复技术的研究现状及展望[J]. 航空制造技术, 2021, 64(8): 22 − 28. ZHUO Yimin, CHEN Yuanhang, YANG Chunli. Research status and prospects of welding repair technology for aero-engine blades[J]. Aeronautical Manufacturing Technology, 2021, 64(8): 22 − 28.
[117] LONG W. Highly reliable joints between dissimilar materials[J]. Journal of Iron and Steel Research International, 2024, 31(10): 2327 − 2328. doi: 10.1007/s42243-024-01358-4