高级检索

基于正交试验的电火花沉积电极摆动工艺

郑广振, 韩红彪, 王锐, 张鹏

郑广振, 韩红彪, 王锐, 张鹏. 基于正交试验的电火花沉积电极摆动工艺[J]. 焊接学报, 2025, 46(3): 43-50, 136. DOI: 10.12073/j.hjxb.20231215001
引用本文: 郑广振, 韩红彪, 王锐, 张鹏. 基于正交试验的电火花沉积电极摆动工艺[J]. 焊接学报, 2025, 46(3): 43-50, 136. DOI: 10.12073/j.hjxb.20231215001
ZHENG Guangzhen, HAN Hongbiao, WANG Rui, ZHANG Peng. Electrode wobble technology of electro-spark deposition based on orthogonal tests[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 43-50, 136. DOI: 10.12073/j.hjxb.20231215001
Citation: ZHENG Guangzhen, HAN Hongbiao, WANG Rui, ZHANG Peng. Electrode wobble technology of electro-spark deposition based on orthogonal tests[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 43-50, 136. DOI: 10.12073/j.hjxb.20231215001

基于正交试验的电火花沉积电极摆动工艺

基金项目: 国家自然科学基金资助项目(51375146);国家智能制造综合标准化项目(2018ZNZX01-02);河南省高等学校重点科研项目(17A460012)
详细信息
    作者简介:

    郑广振,硕士研究生; 主要从事电火花沉积及表面工程的研究工作; Email: zgz12468@163.com

    通讯作者:

    韩红彪,博士,教授,博士研究生导师; Email: lyhhb7157@163.com.

  • 中图分类号: TG 456.9

Electrode wobble technology of electro-spark deposition based on orthogonal tests

  • 摘要:

    为了探索电火花自动沉积工艺,设计并进行了电极摆动正交试验和多道多层连续沉积试验,分析电极摆动工艺参数对单道沉积层成形的影响和电极摆动对多道多层连续沉积的沉积效率、材料转移效率的影响. 结果表明,电极纵向运动时,通过电极摆动可提高电极和工件的接触面积,使沉积点均匀分布,提高电火花沉积的沉积效率和材料转移效率. 电极摆动进行单道沉积时,电极摆动幅值、摆动间距和运动速度影响了单道沉积层的表面形貌、平均宽度、平均波动值、沉积效率和材料转移效率;影响沉积效率和材料转移效率的主次因素为运动速度、摆动间距和摆动幅值,影响平均宽度的主次因素为摆动幅值、运动速度和摆动间距,影响平均波动值的主次因素为摆动间距、运动速度和摆动幅值.

    Abstract:

    To investigate the electro-spark deposition process, orthogonal tests with electrode wobble and multi-pass multilayer continuous deposition experiments were designed and conducted, analyzing the influence of electrode wobble parameters on single-pass deposition layer formation and the effects of electrode wobble on deposition efficiency and material transfer efficiency in multi-pass multilayer continuous deposition. The results show that during longitudinal electrode movement, electrode wobble can increase the contact area between the electrode and workpiece, achieve uniform distribution of deposition points, and enhance both deposition efficiency and material transfer efficiency in electro-spark deposition. In single-pass deposition with electrode wobble, the wobble amplitude, wobble spacing, and movement speed significantly affect the surface morphology, average width, average fluctuation value, deposition efficiency, and material transfer efficiency of the single-pass deposition layer. The dominant factors influencing deposition efficiency and material transfer efficiency in descending order are movement speed, wobble spacing, and wobble amplitude. The main factors affecting average width are wobble amplitude, movement speed, and wobble spacing, while those influencing average fluctuation value are wobble spacing, movement speed, and wobble amplitude.

  • 图  1   单道沉积时旋转电极与工件的相对运动方式

    Figure  1.   Relative motion mode of the rotating electrode and the workpiece during single-pass deposition. (a) longitudinal movement of electrodes; (b) Lateral movement of electrodes; (c) electrode swing longitudinal motion

    图  2   多道多层连续沉积时电极与工件的相对运动轨迹(mm)

    Figure  2.   Relative motion trajectories of electrode and workpiece during multi-pass multi-layer continuous deposition. (a) electrode oscillates; (b) electrode is not oscillating

    图  3   单道沉积层的宽度和波动值的测量原理

    Figure  3.   Measurement principle of width and fluctuation value of single pass deposited layer

    图  4   不同因素和水平下单道沉积层的表面形貌

    Figure  4.   Surface morphology of the deposited layer under different factors and levels. (a) test 1; (b) test 2; (c) test 3; (d) test 4; (e) test 5; (f) test 6; (g) test 7; (h) test 8; (i) test 9

    图  5   单道沉积层的电极摆动搭接成形原理图

    Figure  5.   Lap forming principle diagram of single pass deposited layer with electrode wobble. (a) wc = b; (b) wcb (d is positive); (c) wcb (d is negative)

    图  6   电极摆动和电极不摆动沉积层的表面形貌和截面形貌

    Figure  6.   Surface morphology and cross section morphology of deposited layer with electrode wobble and electrode non-wobble. (a) wobble; (b) non-wobble

    表  1   正交试验因素水平表

    Table  1   Factors and levels table of orthogonal tests


    编号
    因素A 因素B 因素C
    摆动幅值
    a/mm
    摆动间距
    b/mm
    运动速度
    v/(mm·s−1)
    1 2 2.5 1
    2 1 2 3
    3 2 1.5 3
    4 1 2.5 2
    5 1.5 2.5 3
    6 2 2 2
    7 1.5 2 1
    8 1.5 1.5 2
    9 1 1.5 1
    下载: 导出CSV

    表  2   正交试验结果

    Table  2   Results of orthogonal tests

    编号 试验因素 评价指标
    摆动幅值
    a/mm
    摆动间距
    b/mm
    运动速度
    v/(mm·s−1)
    沉积效率
    η/(mg·s−1)
    材料转移效率
    K(%)
    平均宽度
    wsa/mm
    平均波动值
    Δa/(mm2)
    1 2 2.5 1 0.047778 47.87755 2.877214 0.014342553
    2 1 2 3 0.064667 63.28571 1.861458 0.010683787
    3 2 1.5 3 0.067444 65.38926 2.804077 0.007549996
    4 1 2.5 2 0.067953 68.57143 1.808436 0.016493864
    5 1.5 2.5 3 0.044722 39.39098 2.305103 0.020013310
    6 2 2 2 0.068639 69.60526 2.839291 0.008260286
    7 1.5 2 1 0.057072 61.29032 2.413347 0.008949453
    8 1.5 1.5 2 0.082525 73.50427 2.348250 0.005021784
    9 1 1.5 1 0.054630 57.55556 1.993357 0.004855860
    下载: 导出CSV

    表  3   正交试验极差分析结果

    Table  3   Results of the orthogonal test with extreme difference analysis

    评价指标 因素 S1j S2j S3j Rj 优水平 主次关系
    η A 0.062 0.061 0.061 0.001 A1 C>B>A
    B 0.068 0.063 0.053 0.015 B1
    C 0.053 0.073 0.059 0.020 C2
    K A 63.138 58.062 60.957 5.076 A1 C>B>A
    B 65.483 64.727 51.947 13.536 B1
    C 55.574 70.56 56.022 14.986 C2
    wsa A 1.888 2.356 2.840 0.952 A3 A>C>B
    B 2.382 2.371 2.330 0.052 B1
    C 2.428 2.332 2.324 0.104 C1
    Δa A 0.011 0.011 0.010 0.001 A3 B>C>A
    B 0.006 0.009 0.017 0.011 B1
    C 0.009 0.010 0.013 0.003 C1
    下载: 导出CSV

    表  4   多道多层连续沉积试验的沉积效率和材料转移效率

    Table  4   Deposition efficiency and material transfer efficiency of multi-pass multi-layer continuous deposition tests

    试验类型 沉积效率
    η/(mg·s−1)
    材料转移效率
    K(%)
    电极摆动 0.030 7 59.37
    电极不摆动 0.025 1 46.44
    下载: 导出CSV

    表  5   放电波形类型和比例统计表

    Table  5   Statistical table of discharge waveform types and proportions

    试验类型短路放电比例P1(%)间隙放电比例P2(%)接触放电比例P3(%)空载放电比例P4(%)合计放电数量N/个
    电极摆动25.95.553.814.8236
    电极不摆动36.47.639.017.0236
    下载: 导出CSV
  • [1]

    Kumaran V, Muralidharan B. Electric discharge coating process: a critical review with potential application[J]. Engineering Research Express, 2023, 5(1): 12005. doi: 10.1088/2631-8695/acc0db

    [2]

    Yang S, Gao S, Xue W, et al. Structural design and high temperature tribological behavior of a new turbine blade tip protective coating[J]. Surface & Coatings Technology, 2023, 457: 129316.

    [3]

    Nisar A, Zhang C, Agarwal A. Unveiling the wear behavior of multi-component ultra-high temperature ceramic thin coatings with pulsed electro-spark deposition[J]. Surface & Coatings Technology, 2023, 473: 129971.

    [4]

    Yang S, Gao S, Xue W, et al. Investigations on microstructure, oxidation, and tribological behavior of NiCoCrAlYTa/Y2O3 blade tip protective coating produced by electro spark deposition over a wide temperature range[J]. Tribology International, 2023, 180: 108274. doi: 10.1016/j.triboint.2023.108274

    [5]

    Kuptsov K A, Antonyuk M N, Sheveyko A N, et al. High-entropy Fe-Cr-Ni-Co-(Cu) coatings produced by vacuum electro-spark deposition for marine and coastal applications[J]. Surface and Coatings Technology, 2023, 453: 129136. doi: 10.1016/j.surfcoat.2022.129136

    [6]

    Kayali Y, Kanca E, Gunen A. Effect of boronizing on microstructure, high-temperature wear and corrosion behavior of additive manufactured inconel 718[J]. Materials Characterization, 2022, 191: 112155. doi: 10.1016/j.matchar.2022.112155

    [7] 李忠盛, 吴护林, 陈海涛, 等. 钢表面电火花沉积合成W-Mo高熔点复合涂层[J]. 表面技术, 2023, 52(10): 250 − 258.

    Li Zhongsheng, Wu Hulin, Chen Haitao, et al. High melting point composite coating of W-Mo alloy synthesized by electro-spark deposition on steel surface[J]. Surface Technology, 2023, 52(10): 250 − 258.

    [8] 杨林, 曹同坤, 吕壮. Ti(C, N)基金属陶瓷表面电火花沉积自润滑涂层及其摩擦学性能研究[J]. 工具技术, 2022, 56(10): 59 − 62. doi: 10.3969/j.issn.1000-7008.2022.10.011

    Yang Lin, Cao Tongkun, Lü Zhuang. Study on the tribological properties of self-lubricatingcoatings deposited on Ti(C, N) cermet by electro-spark deposition[J]. Tool Technology, 2022, 56(10): 59 − 62. doi: 10.3969/j.issn.1000-7008.2022.10.011

    [9] 杨岚淞, 羊思洁, 罗松, 等. Q235钢表面电火花沉积铁基非晶改性层及其性能[J]. 电镀与涂饰, 2023, 42(3): 55 − 61.

    Yang Lansong, Yang Sijie, Luo Song, et al. Electrospark deposition of amorphous Fe-based modified layer on surface of Q235 steel and its properties[J]. Electroplating and Finishing, 2023, 42(3): 55 − 61.

    [10] 孙又银, 高玉新, 程虎. La2O3对电火花沉积Fe基涂层组织和耐磨性能的影响[J]. 材料保护, 2022, 55(3): 93-97, 114.

    Sun Youyin, Gao Yuxin, Cheng Hu. Effect of La2O3 on microstructure and wear properties of Fe-based coating by electro-spark deposition, 2022, 55(3): 93-97, 114.

    [11] 张忠科, 张栋, 王希靖, 等. 基于Labview的电火花自动沉积监控系统设计[J]. 电焊机, 2021, 51(5): 24 − 29. doi: 10.7512/j.issn.1001-2303.2121.05.05

    Zhang Zhongke, Zhang Dong, Wang Xijing, et al. Design of automatic discharge deposition monitoring system based on labview[J]. Electric Welding Machine, 2021, 51(5): 24 − 29. doi: 10.7512/j.issn.1001-2303.2121.05.05

    [12] 刘宇, 王天姝, 苏全宁, 等. 钛合金表面电火花沉积NiCr–3涂层的试验研究[J]. 航空制造技术, 2022, 65(5): 104 − 112.

    Liu Yu, Wang Tianshu, Su Quanning, et al. Experimental study on electrospark deposition of NiCr-3 coating on titanium alloy surface[J]. Aeronautical Manufacturing Technology, 2022, 65(5): 104 − 112.

    [13] 陈俊潮, 韩红彪, 王中豪, 等. 不同电极运动形式下电火花堆焊的放电机理分析[J]. 表面技术, 2021, 50(6): 281 − 287,316.

    Chen Junchao, Han Hongbiao, Wang Zhonghao, et al. Analysis of discharge mechanism of electric spark overlaying in different modes of electrode movement[J]. Surface technology, 2021, 50(6): 281 − 287,316.

    [14] 王顺, 韩红彪, 李世康, 等. 基于正交试验的圆柱电极参数对电火花沉积质量影响分析[J]. 焊接学报, 2021, 42(7): 37 − 43. doi: 10.12073/j.hjxb.20210131002

    Wang Shun, Han Hongbiao, Li Shikang, et al. Analysis of influence of cylindrical electrode parameters on electro-spark deposition quality based on orthogonal experimen[J]. Transactions of the China Welding Institution, 2021, 42(7): 37 − 43. doi: 10.12073/j.hjxb.20210131002

    [15] 李梦楠, 韩红彪, 李世康, 等. 旋转电极接触力对电火花沉积放电过程参数和材料转移的影响[J]. 焊接学报, 2023, 44(1): 71 − 77 doi: 10.12073/j.hjxb.20220206001

    Li Mengnan, Han Hongbiao, Li Shikang, et al. Effect of rotating electrode contact force on discharge parameters and material transfer in electric-spark deposition[J]. Transactions of the China Welding Institution, 2023, 44(1): 71 − 77. doi: 10.12073/j.hjxb.20220206001

    [16] 侯玉杰, 韩红彪, 杨鑫, 等. 电火花沉积的放电参数闭环控制系统研制[J]. 焊接学报, 2023, 44(9): 53 − 59. doi: 10.12073/j.hjxb.20221122003

    Hou Yujie, Han Hongbiao, Yang Xin, et al. Development of a closed loop control system for discharge parameters of electro-spark deposition[J]. Transactions of the China Welding Institution, 2023, 44(9): 53 − 59. doi: 10.12073/j.hjxb.20221122003

    [17]

    Lian Y, Cui M, Han A, et al. Multi-Criteria optimization of automatic electro-spark deposition TiCrNiVSi0.1 multi-principal element alloy coating on TC4 alloy[J]. Coatings, 2023, 13(1): 214. doi: 10.3390/coatings13010214

    [18]

    Hou Y, Han H, Zheng G, et al. Effect of discharge parameters on electric-spark deposition material transfer[J]. Proceedings of the Institution of Mechanical Engineers Part c-Journal of Mechanical Engineering Sciences, 2024(4): 1142 − 1148.

    [19] 韩红彪, 郭敬迪, 焦文清. 旋转电极电火花沉积/堆焊的放电机理[J]. 焊接学报, 2019, 40(5): 67 − 72. doi: 10.12073/j.hjxb.2019400129

    Han Hongbiao, Guo Jingdi, Jiao Wenqing. Discharge mechanism of electro-spark deposition with rotary electrode[J]. Transactions of the China Welding Institution, 2019, 40(5): 67 − 72. doi: 10.12073/j.hjxb.2019400129

  • 期刊类型引用(2)

    1. 田君,戴品强,李小军,王海燕. 稀土对Zn20Sn高温无铅钎料组织与性能的影响. 电子元件与材料. 2017(03): 59-62 . 百度学术
    2. 殷祚炷,孙凤莲. 铜铝钎焊接头腐蚀机理分析. 焊接学报. 2017(10): 121-124+134 . 本站查看

    其他类型引用(2)

图(6)  /  表(5)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  6
  • PDF下载量:  14
  • 被引次数: 4
出版历程
  • 收稿日期:  2023-12-14
  • 网络出版日期:  2025-02-18
  • 刊出日期:  2025-03-24

目录

    /

    返回文章
    返回