高级检索

CrMoV与NiCrMoV异种钢焊接接头的高周疲劳性能及寿命模型

王志鹏, 朱明亮, 轩福贞

王志鹏, 朱明亮, 轩福贞. CrMoV与NiCrMoV异种钢焊接接头的高周疲劳性能及寿命模型[J]. 焊接学报, 2024, 45(7): 67-73. DOI: 10.12073/j.hjxb.20231205004
引用本文: 王志鹏, 朱明亮, 轩福贞. CrMoV与NiCrMoV异种钢焊接接头的高周疲劳性能及寿命模型[J]. 焊接学报, 2024, 45(7): 67-73. DOI: 10.12073/j.hjxb.20231205004
WANG Zhipeng, ZHU Mingliang, XUAN Fuzhen. High cycle fatigue property and lifetime modeling of CrMoV and NiCrMoV dissimilar steel welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 67-73. DOI: 10.12073/j.hjxb.20231205004
Citation: WANG Zhipeng, ZHU Mingliang, XUAN Fuzhen. High cycle fatigue property and lifetime modeling of CrMoV and NiCrMoV dissimilar steel welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 67-73. DOI: 10.12073/j.hjxb.20231205004

CrMoV与NiCrMoV异种钢焊接接头的高周疲劳性能及寿命模型

基金项目: 国家自然科学基金资助项目(51922041)
详细信息
    作者简介:

    王志鹏,硕士研究生,主要开展汽轮机转子焊接接头疲劳性能研究;Email: 1146750275@qq.com

    通讯作者:

    朱明亮,博士,教授,博导,主要研究方向为机械结构疲劳与断裂;Email: mlzhu@ecust.edu.cn.

  • 中图分类号: TG 407

High cycle fatigue property and lifetime modeling of CrMoV and NiCrMoV dissimilar steel welded joint

  • 摘要:

    对CrMoV与NiCrMoV异种钢焊接接头开展室温及400 ℃下的高周疲劳试验,并对失效试样进行断口分析,研究异种钢焊接接头的高周疲劳失效机理.结果表明,接头疲劳S-N曲线呈现连续下降形式,在高周疲劳过程中未见疲劳极限平台,失效位置均位于焊缝金属区域,并且集中在显微硬度值最低的结构弱区;随着应力幅值的下降,裂纹萌生模式由表面和内部萌生的竞争转变为内部微缺陷萌生占主导,内部焊接气孔微缺陷是主要裂纹萌生源;根据Murakami模型得到的疲劳极限分散性较大,与高周疲劳寿命未呈现出明显规律,通过引入Z参量模型,指出焊接接头的高周疲劳寿命由应力水平、微缺陷有效尺寸和相对深度等因素共同决定,Z参量与高周疲劳寿命具有很好线性关系.

    Abstract:

    CrMoV and NiCrMoV dissimilar steel welded joints were subjected to high cycle fatigue tests at room temperature and 400 ℃, fracture analysis was carried out on the failed specimens to study the high cycle fatigue failure mechanism of dissimilar steel welded joints. The results show that the S-N curves showed a continuous decrease, and there is no fatigue limit plateau observed during high cycle fatigue, while all the failure locations were located in the weld metal region, which was defined as the structurally weak zone with lower micro-hardness; with the increase of the high fatigue lifetime, the crack initiation mode was changed from the competition between surface and internal initiation to the dominated internal micro-defect initiation, the internal weld porosity micro-defects were the main source of crack initiation; The fatigue limits obtained by the Murakami model were dispersive and there was no apparent law between high cycle fatigue life. By introducing the Z parameter model, it was pointed out that the high cycle fatigue lifetime of welded joint was determined by the stress level, effective size and relative depth of micro-defects, and the Z parameter had a good linear relationship with the high cycle fatigue lifetime.

  • 图  1   高周疲劳试样尺寸(mm)

    Figure  1.   Shape and dimensions of HCF specimen

    图  2   异种钢焊接接头各区域微观组织

    Figure  2.   Microstructures of various regions of the dissimilar steel welded joints. (a) columnar grained zone of weld metal; (b) equal axis grain zone of weld metal; (c) CrMoV base metal; (d) NiCrMoV base metal.

    图  3   显微硬度沿焊接接头的分布

    Figure  3.   Micro-hardness distribution along the welds

    图  4   不同试验条件下的S-N曲线

    Figure  4.   S-N curves at different test conditions

    图  5   室温与400 ℃下的失效位置分布

    Figure  5.   Distribution of failure locations at RT and 400 ℃

    图  6   异种钢焊接接头室温下的高周疲劳断口形貌

    Figure  6.   The fracture morphology of welded joint under high cycle fatigue at RT. (a) 290 MPa,Nf = 7.65 × 106 cycles; (b) 290 MPa,Nf = 8.35 × 105 cycles; (c) 280 MPa,Nf = 8.72 × 105 cycles; (d) 270 MPa,Nf = 1.77 × 107 cycles

    图  7   异种钢焊接接头400 ℃下的高周疲劳断口形貌(图7a-图7c: R = 0; 图7d-图7f:R = −1)

    Figure  7.   The fracture morphology of welded joint under high cycle fatigue at 400 ℃. (a) 210 MPa, Nf = 4.50 × 106 cycles; (b) 180 MPa, Nf = 2.64 × 107 cycles; (c) 180 MPa, Nf = 3.65 × 107 cycles; (d) 270 MPa, Nf = 4.39 × 106 cycles; (e) 260 MPa, Nf = 5.60 × 105 cycles; (f) 240 MPa, Nf = 1.37 × 107 cycles

    图  8   室温与400 ℃下疲劳极限随疲劳寿命的演化关系

    Figure  8.   The evolution of fatigue limit with fatigue life at RT and 400 ℃

    图  9   室温与400 ℃下Z参量与疲劳寿命的关系

    Figure  9.   The relationship between Z parameter and fatigue life at RT and 400 ℃

    表  1   母材及焊缝金属的化学成分 (质量分数,%)

    Table  1   Chemical compositions of base metal and weld metal

    材料CSiMnPSCrMoNiV余量
    CrMoV0.10~0.15≤0.10.30~0.45≤0.015≤0.01510.0~12.01.00~1.300.60~0.800.15~0.25Fe
    NiCrMoV0.20~0.35≤0.10.15~0.45≤0.015≤0.0151.50~2.500.25~0.652.50~3.500.05~0.15Fe
    CrMo0.07~0.12≤0.600.50~0.80≤0.025≤0.0252.10~2.700.90~1.20≤0.2Fe
    下载: 导出CSV

    表  2   Z参量模型计算所需参数

    Table  2   Parameters for Z-parameter model calculation

    温度
    T/℃
    应力比
    R
    循环寿命
    Nf/次
    应力幅
    σa/MPa
    相对深度
    D
    有效尺寸
    $\sqrt S $/μm
    Z参量
    Z/(MPa·μm1/6)
    2502.54 × 106270128.5471.9
    1.09 × 106280133.9503.7
    8.72 × 1052800.64123.4499.8
    9.23 × 1052800.9498.9583.8
    4.56 × 1062900.9748.6545.6
    8.35 × 1052900.91131.1623.5
    40002.64 × 1071800.8595.1354.6
    3.65 × 1071800.6960.7296.4
    5.09 × 1062000.82107.5394.9
    2.60 × 1062100.890.7398.1
    1.70 × 1062200.89129.1466.6
    9.93 × 1052200.77109.3422.1
    400−11.37 × 1072400.9479.7482.7
    7.93 × 1062500.6253.5382.1
    1.44 × 1072500.8663.6463.2
    5.60 × 1052600.85173.3565.9
    1.84 × 1062600.9484.4527.9
    4.39 × 1062700.9558.9519.1
    4.87 × 1062700.5636.9368.7
    下载: 导出CSV
  • [1]

    Wang W K, Zhang J X, Zhong J. Comparative evaluation of LCF behavior of dissimilar steels and welds in an ultra-supercritical turbine rotor at 280 ℃[J]. International Journal of Fatigue, 2020, 139: 105771. doi: 10.1016/j.ijfatigue.2020.105771

    [2]

    Maurya A K, Pandey C, Chhibber R. Dissimilar welding of duplex stainless steel with Ni alloys: A review[J]. International Journal of Pressure Vessels and Piping, 2021, 192: 104439. doi: 10.1016/j.ijpvp.2021.104439

    [3] 黄毓晖, 司晓法, 翁硕, 等. 疲劳损伤对核电汽轮机焊接转子接头应力腐蚀开裂敏感性的影响[J]. 焊接学报, 2020, 41(4): 12 − 19,37.

    Huang YuHui, Si Xiaofa, Weng Shuo, et al. Effect of fatigue damage on stress corrosion cracking sensitivity of nuclear steam turbine welded joint[J]. Transactions of the China Welding Institution, 2020, 41(4): 12 − 19,37.

    [4]

    Wang D, Yao D, Gao Z, et al. Fatigue mechanism of medium-carbon steel welded joint: Competitive impacts of various defects[J]. International Journal of Fatigue, 2021, 151: 106363. doi: 10.1016/j.ijfatigue.2021.106363

    [5] 谢琦, 王娜, 杨雅静, 等. 含缺陷钢结构焊接接头检测与评估[J]. 机械工程学报, 2021, 57(24): 223 − 232. doi: 10.3901/JME.2021.24.223

    Xie Qi, Wang Na, Yang Yajing, et al. Detection and evaluation of welded joints of steel structures with defects[J]. Journal of Mechanical Engineering, 2021, 57(24): 223 − 232. doi: 10.3901/JME.2021.24.223

    [6] 刘龙隆, 轩福贞, 朱明亮. 25Cr2Ni2 MoV钢焊接接头的超高周疲劳特性[J]. 机械工程学报, 2014, 50(4): 25 − 31. doi: 10.3901/JME.2014.04.025

    Liu Longlong, Xuan Fuzhen, Zhu Mingliang. Very high cycle fatigue behavior of 25Cr2Ni2 MoV steel welded joint[J]. Journal of Mechanical Engineering, 2014, 50(4): 25 − 31. doi: 10.3901/JME.2014.04.025

    [7] 靳晓坤, 张世超, 刁旺战, 等. 时效时间对SP2215同种钢焊接接头微观组织和力学性能的影响[J]. 焊接学报, 2023, 44(9): 95 − 105.

    Jin Xiaokun, Zhang Shichao, Diao Wangzhan, et al. Effect of aging time on the microstructure and mechanical properties of the the SP2215 steel welded joint[J]. Transactions of the China Welding Institution, 2023, 44(9): 95 − 105.

    [8] 轩福贞, 朱明亮, 王国彪. 结构疲劳百年研究的回顾与展望[J]. 机械工程学报, 2021, 57(6): 26 − 51. doi: 10.3901/JME.2021.06.026

    Xuan Fuzhen, Zhu Mingliang, Wang Guobiao. Retrospect and prospect on century-long research of structural fatigue[J]. Journal of Mechanical Engineering, 2021, 57(6): 26 − 51. doi: 10.3901/JME.2021.06.026

    [9]

    Zhu M L, Xuan F Z, Du Y N, et al. Very high cycle fatigue behavior of a low strength welded joint at moderate temperature[J]. International Journal of Fatigue, 2012, 40: 74 − 83. doi: 10.1016/j.ijfatigue.2012.01.014

    [10]

    Wang W K, Liu Y, Guo Y, et al. High cycle fatigue and fracture behaviors of CrMoV/NiCrMoV dissimilar rotor welded joint at 280 ℃[J]. Materials Science and Engineering: A, 2020, 786: 139473. doi: 10.1016/j.msea.2020.139473

    [11]

    Shao C, Lu F, Cui H, et al. Characterization of high-gradient welded microstructure and its failure mode in fatigue test[J]. International Journal of Fatigue, 2018, 113: 1 − 10. doi: 10.1016/j.ijfatigue.2018.03.029

    [12]

    Wang N, Jin L, Zhu M L, et al. Effect of hydrogen on very high cycle fatigue behavior of a low-strength Cr-Ni-Mo-V steel containing micro-defects[J]. Procedia Structural Integrity, 2017, 7: 376 − 382. doi: 10.1016/j.prostr.2017.11.102

    [13]

    Zhu M L, Liu L L, Xuan F Z. Effect of frequency on very high cycle fatigue behavior of a low strength Cr–Ni–Mo–V steel welded joint[J]. International journal of fatigue, 2015, 77: 166 − 173. doi: 10.1016/j.ijfatigue.2015.03.027

    [14]

    Zhu M L, Xuan F Z. Failure mechanisms and fatigue strength assessment of a low strength Cr-Ni-Mo-V steel welded joint: Coupled frequency and size effects[J]. Mechanics of Materials, 2016, 100: 198 − 208. doi: 10.1016/j.mechmat.2016.06.017

    [15] 康举, 王启冰, 王智春, 等. 超超临界火电机组异种钢焊接接头高温断裂机理综述[J]. 机械工程学报, 2022, 58(24): 58 − 83. doi: 10.3901/JME.2022.24.058

    kang Ju, Wang Qibing, Wang Zhichun, et al. A review on high temperature rupture mechanisms of dissimilar metal welded joints for the usc thermal power units[J]. Journal of Mechanical Engineering, 2022, 58(24): 58 − 83. doi: 10.3901/JME.2022.24.058

    [16]

    Wu Z, Liu S, Yang Z, et al. Simultaneously improved the strength dramatically and eliminated HAZ softening of DP980 steel pulsed-arc welding joints by PWHT[J]. Materials Science and Engineering: A, 2022, 837: 142752. doi: 10.1016/j.msea.2022.142752

    [17]

    Jorge J C F, Monteiro J L D, de Carvalho Gomes A J, et al. Influence of welding procedure and PWHT on HSLA steel weld metals[J]. Journal of Materials Research and Technology, 2019, 8(1): 561 − 571. doi: 10.1016/j.jmrt.2018.05.007

    [18]

    Zhu M L, Xuan F Z, Wang Z. Very high cycle fatigue behavior and life prediction of a low strength weld metal at moderate temperature [C]// Proceedings of the ASME Pressure Vessels and Piping Conference. ASME, Baltimore, USA, 2011, 317 − 329.

    [19]

    Kobayashi H, Todoroki A, Oomura T, et al. Ultra-high-cycle fatigue properties and fracture mechanism of modified 2.25 Cr–1 Mo steel at elevated temperatures[J]. International journal of fatigue, 2006, 28(11): 1633 − 1639. doi: 10.1016/j.ijfatigue.2005.08.016

    [20]

    Li G, Sun C. High-temperature failure mechanism and defect sensitivity of TC17 titanium alloy in high cycle fatigue[J]. Journal of Materials Science & Technology, 2022, 122: 128 − 140.

    [21]

    Murakami Y, Yokoyama N N, Nagata J. Mechanism of fatigue failure in ultralong life regime[J]. Fatigue & Fracture of Engineering Materials & Structures, 2002, 25(8-9): 735 − 746.

    [22]

    Wu W, Zhu M L, Liu X, et al. Effect of temperature on high cycle fatigue and very high cycle fatigue behaviours of a low strength CrNiMoV steel welded joint[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(1): 45 − 54.

  • 期刊类型引用(1)

    1. 王祉冰,王剑,张硕. 基于FAD图法的铁路货车车体断裂评估. 轨道交通装备与技术. 2024(05): 21-25 . 百度学术

    其他类型引用(2)

图(9)  /  表(2)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  4
  • PDF下载量:  38
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-12-04
  • 网络出版日期:  2024-07-04
  • 刊出日期:  2024-07-24

目录

    /

    返回文章
    返回