高级检索

原位合成钎料Zr含量对钎焊接头组织与性能影响

秦建, 杨浩哲, 裴夤崟, 杨骄, 龙伟民, 廖志谦, 雷振

秦建, 杨浩哲, 裴夤崟, 杨骄, 龙伟民, 廖志谦, 雷振. 原位合成钎料Zr含量对钎焊接头组织与性能影响[J]. 焊接学报, 2025, 46(3): 27-35. DOI: 10.12073/j.hjxb.20231127003
引用本文: 秦建, 杨浩哲, 裴夤崟, 杨骄, 龙伟民, 廖志谦, 雷振. 原位合成钎料Zr含量对钎焊接头组织与性能影响[J]. 焊接学报, 2025, 46(3): 27-35. DOI: 10.12073/j.hjxb.20231127003
QIN Jian, YANG Haozhe, PEI Yinyin, YANG Jiao, LONG Weimin, LIAO Zhiqian, LEI Zhen. Effect of Zr content in in-situ synthesized brazing alloy on the microstructure and properties of brazed joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 27-35. DOI: 10.12073/j.hjxb.20231127003
Citation: QIN Jian, YANG Haozhe, PEI Yinyin, YANG Jiao, LONG Weimin, LIAO Zhiqian, LEI Zhen. Effect of Zr content in in-situ synthesized brazing alloy on the microstructure and properties of brazed joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 27-35. DOI: 10.12073/j.hjxb.20231127003

原位合成钎料Zr含量对钎焊接头组织与性能影响

基金项目: 国家重点研发计划项目(2021YFB3401100)
详细信息
    作者简介:

    秦建,博士研究生;主要研究方向是异种材料焊接冶金与焊接材料、焊接新工艺等领域的研究与开发;Email: qinjianzzu@163.com

    通讯作者:

    龙伟民,博士,博士研究生导师;Email: brazelong@163.com.

  • 中图分类号: TG 456

Effect of Zr content in in-situ synthesized brazing alloy on the microstructure and properties of brazed joints

  • 摘要:

    由于钛基钎料钎焊钛合金接头具有强度高、耐蚀性好和耐热性好等优点,因此在重载荷、强腐蚀等极端服役环境下的钛合金构件常用钛基钎料进行钎焊连接.文中针对钛合金钎焊出现的基体组织性能恶化和焊缝脆化等问题展开研究,设计了以Zr、Cu、Ni纯金属箔构成原位合成钎料的纯钛TA2真空钎焊机理和工艺研究,发现原位合成钎料钎焊接头的典型界面组织为母材/扩散层(Ti,Zr)2(Cu,Ni) + α-Ti共析组织/钎缝中心(共晶)化合物层/扩散层(Ti,Zr)2(Cu,Ni) + α-Ti共析组织/母材,自钎缝中心化合物层至两侧母材的显微硬度逐渐降低.结果表明,随着钎料Zr含量提高,扩散层厚度和钎缝总宽度先减小后增大,钎缝中心化合物层厚度先增大后减小,Zr26CuNi钎料的钎缝中心化合物层厚度最小,约为10 μm;随着钎料Zr含量提高,钎焊接头的剪切强度先减小后增大,Zr26CuNi钎料的钎焊接头剪切强度最大,平均值为207 MPa,接头断裂以脆性断裂为主,因此,Zr26CuNi钎料的钎焊接头性能较为优异,实现了原位合成钎料的成分优化.

    Abstract:

    The brazed joints obtained by welding titanium alloys with titanium-based brazing filler metal have the advantages of high strength, good corrosion resistance and good heat resistance. Therefore, titanium alloy components which brazed with titanium-based brazing alloys are commonly used in extreme service environments such as heavy loads and strong corrosion. In this paper, the deterioration of matrix microstructure and properties, the embrittlement of welding in titanium alloy brazing are studied. The vacuum brazing mechanism and process of pure titanium TA2 with Zr, Cu and Ni pure metal foils as in-situ synthesized brazing filler metal were designed. It was found that the typical interface structure of the brazed joint obtained by in-situ synthesis brazing alloy was base metal/diffusion layer (Ti, Zr)2(Cu, Ni) + α-Ti eutectoid structure / brazing seam center (eutectic) compound layer / diffusion layer (Ti, Zr)2(Cu, Ni) + α-Ti eutectoid structure / base metal. The microhardness gradually decreases from the compound layer in the center of the brazing seam to the base metal on both sides. The results show that with the increase of Zr content, the thickness of diffusion layer and the total width of brazing seam decrease first and then increase. The thickness of the compound layer in the center of the brazing seam increases first and then decreases. The thickness of the compound layer in the center of the brazing seam of Zr26CuNi brazing filler metal is the smallest, about 10 μm. The shear strength of the brazed joint decreases first and then increases with the increase of Zr content in the filler metal. Among them, the shear strength of Zr26CuNi brazing joint is the largest, with an average value of 207 MPa. The fracture of the joint is mainly brittle fracture. Therefore, the brazing joint performance of Zr26CuNi brazing alloy is excellent, and the composition optimization of in-situ synthesized brazing alloy is realized.

  • 图  1   钎焊接头装配示意图(mm)

    Figure  1.   Assembly schematic diagram of brazed joints. (a) shear test specimen joint; (b) tensile test specimen joint

    图  2   钎焊接头拉伸试样

    Figure  2.   Brazed joint tensile test specimen. (a) sampling dimensions; (b) tensile test specimen

    图  3   剪切试验工装及试样取样示意图

    Figure  3.   Schematic diagram of shear test fixture and specimen sampling. (a) shear test fixture; (b) sampling dimensions

    图  4   3种含Zr钎料钎焊接头的显微组织及接头组织放大

    Figure  4.   Microstructure and magnified micrographs of three brazed joints using Zr-containing brazing filler metals. (a) Zr26CuNi brazing filler metal; (b) Zr42CuNi brazing filler metal; (c) Zr52CuNi brazing filler metal

    图  5   钎焊接头界面反应产物形成和演变示意图

    Figure  5.   Schematic diagram of formation and evolution of interfacial reaction products in brazed joints. (a) brazing heating process; (b) melting of the brazing filler metal and formation of the liquid phase; (c) cooling process of a brazed joint using Zr26CuNi brazing filler metal; (d) cooling process of a brazed joint using Zr52CuNi brazing filler metal; (e) phase diagram of Ti(Zr)-Cu(Ni)

    图  6   钎缝维氏硬度

    Figure  6.   Vickers hardness of brazing seam

    图  7   钎料Zr含量对钎焊接头剪切强度的影响

    Figure  7.   Influence of Zr content in the brazing filler metal on the shear strength of brazed joints

    图  8   不同含Zr钎料钎焊接头断裂路径横截面图

    Figure  8.   Cross-sectional images of the fracture path of brazed joints using different Zr-containing brazing filler metals. (a) Zr26CuNi; (b) Zr42CuNi; (c) Zr52CuNi

    图  9   不同Zr含量对钎焊接头剪切断口形貌的影响

    Figure  9.   Effect of different Zr content on the shear fracture morphology of brazed joints. (a) Zr26CuNi of cleavage position; (b) Zr26CuNi of ligamentous fossa position; (c) Zr42CuNi; (d) Zr52CuNi

    表  1   TA2的主要化学成分(质量分数,%)

    Table  1   Chemical compositions of TA2

    FeCNHO其他Ti
    0.0510.0090.0100.0010.083<0.10余量
    下载: 导出CSV

    表  2   原位合成ZrCuNi钎料的规格与名义成分

    Table  2   Specification and nominal compositions of in-situ synthesized ZrCuNi brazing alloy

    钎料 金属箔厚度l/μm 原位合成钎料成分w(质量分数, %)
    Zr Cu Ni Zr Cu Ni
    Zr26CuNi 10 10 10 26 37 37
    Zr42CuNi 20 10 10 42 29 29
    Zr52CuNi 30 10 10 52 24 24
    下载: 导出CSV

    表  3   含Zr钎料钎焊TA2接头中各微区的化学成分(质量分数,%)

    Table  3   Chemical compositions of microregions in brazed joints of TA2 using Zr-containing brazing filler metal

    钎料成分微区TiZrCuNi可能的相
    Zr26CuNiA100.00α-Ti
    B64.634.8019.7010.87(Ti,Zr)2(Cu,Ni)
    C87.744.283.094.89共析反应产物
    Zr42CuNiA148.6122.0916.0513.25(Ti,Zr)2(Cu,Ni)
    B190.076.811.641.48共析反应产物
    C183.918.773.773.55共析反应产物
    D196.043.96α-Ti
    Zr52CuNiA295.414.59α -Ti
    B263.835.6322.827.72(Ti,Zr)2(Cu,Ni)
    C249.5619.3414.9716.13(Ti,Zr)2(Cu,Ni)
    D284.967.776.593.68共析反应产物
    E298.981.02α-Ti
    下载: 导出CSV
  • [1] 李治, 陈文炯, 张天恩. 翅片打孔对板翅式换热器传热性能和流场影响[J]. 大连理工大学学报, 2021, 61(1): 60 − 66. doi: 10.7511/dllgxb202101009

    Li Zhi, Chen Wenjiong, Zhang Tianen. Influence of fin perforation on heat transfer performance and flow field of plate-fin heat exchangers[J]. Journal of Dalian University of Technology, 2021, 61(1): 60 − 66. doi: 10.7511/dllgxb202101009

    [2] 李悦, 王建峰, 马龙飞, 等. 保温时间对钛合金板翅式换热器真空钎焊过程温度场及残余应力的影响[J]. 焊接学报, 2024, 45(2): 33 − 40. doi: 10.12073/j.hjxb.20230303001

    Li Yue, Wang Jianfeng, Ma Longfei, et al. Effect of holding time on temperature field and residual stress in the vacuum brazing process of titanium alloy plate-fin heat exchangers[J]. Transactions of the China Welding Institution, 2024, 45(2): 33 − 40. doi: 10.12073/j.hjxb.20230303001

    [3] 龙伟民, 赵月, 钟素娟, 等. 铜/铝异质钎焊连接界面金属间化合物的研究进展(英文)[J]. 稀有金属材料与工程, 2021, 50(1): 7 − 13.

    Long Weimin, Zhao Yue, Zhong Sujuan, et al. Progress of intermetallic compounds at the interface of copper/aluminum heterogeneous brazed joints[J]. Rare Metal Materials and Engineering, 2021, 50(1): 7 − 13.

    [4] 龙伟民, 李胜男, 都东, 等. 钎焊材料形态演变及发展趋势(英文)[J]. 稀有金属材料与工程, 2019, 48(12): 3781 − 3790.

    Long Weimin, Li Shengnan, Du Dong, et al. Morphological evolution and development trend of brazing materials[J]. Rare Metal Materials and Engineering, 2019, 48(12): 3781 − 3790.

    [5]

    Chen C R, Liu C, Wang Q T, et al. Effects of heat input on layer heterogeneity of selective laser melting Ti-6Al-4V components[J]. China Welding, 2023, 32(3): 51 − 66.

    [6]

    Zhang L, Long W, Du D, et al. The microstructure and wear properties of diamond composite coatings on TC4 made by induction brazing[J]. Diamond and Related Materials, 2022, 125: 109032. doi: 10.1016/j.diamond.2022.109032

    [7] 张启运, 庄鸿寿. 钎焊手册(第3版)[M]. 机械工业出版社, 2018.

    Zhang Qiyun, Zhuang Hongshou. Handbook of brazing and soldering (the third edition)[M]. China Machine Press, 2018.

    [8]

    Long W. Highly reliable joints between dissimilar materials[J]. Journal of Iron and Steel Research International, 2024, 31(10): 2327 − 2328. doi: 10.1007/s42243-024-01358-4

    [9]

    Xia Y, Dong H, Zhang R, et al. Interfacial microstructure and shear strength of Ti6Al4V alloy/316 L stainless steel joint brazed with Ti33. 3Zr16. 7Cu50− xNix amorphous filler metals[J]. Materials & Design, 2020, 187: 108380.

    [10]

    Xia Y, Ma Z, Du Q, et al. Microstructure and properties of the TiAl/GH3030 dissimilar joints vacuum-brazed with a Ti-based amorphous filler metal[J]. Materials Characterization, 2024, 207: 113520. doi: 10.1016/j.matchar.2023.113520

    [11] 郭民, 雷玉珍, 赵健, 等. Cu75Pt钎料钎焊Ti60与TC4接头界面组织及性能[J]. 焊接学报, 2022, 43(2): 40 − 44.

    Guo Min, Lei Yuzhen, Zhao Jian, et al. Interfacial microstructure and mechanical property of Ti60 and TC4 joint brazed with Cu75Pt filler metal[J]. Transactions of The China Welding Institution, 2022, 43(2): 40 − 44.

    [12]

    Jing Y, Xiong H, Shang Y, et al. Design TiZrCuNi filler materials for vacuum brazing TA15 alloy[J]. Journal of Manufacturing Processes, 2020, 53: 328 − 335. doi: 10.1016/j.jmapro.2020.02.021

    [13]

    Lu Q, Huang J, Ding Z, et al. Enhanced mechanical properties of TZM joint brazed at high temperature using Mo-Ni filler metal with Boron addition[J]. Welding in the World, 2024: 1-9.

    [14] 龙伟民, 张冠星, 张青科, 等. 钎焊过程原位合成高强度银钎料[J]. 焊接学报, 2015, 36(11): 1 − 4.

    Long Weimin, Zhang Guanxing, Zhang Qingke, et al. In situ synthesis of high-strength silver brazing material by brazing process[J]. Transactions of the China Welding Institution, 2015, 36(11): 1 − 4.

    [15]

    Marinho C, Toptan F, Guedes A, et al. Electrochemical response of Ti joints vacuum brazed with TiCuNi, AgCu, and Ag fillers[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(4): 999 − 1011. doi: 10.1016/S1003-6326(21)65556-5

    [16]

    Wang L, Li J, Liu K, et al. Study on microstructure and mechanical properties of vacuum brazing TC4 titanium alloy with Ti-37.5 Zr-15Cu-10Ni amorphous filler metal[J]. Materials Today Communications, 2024, 41: 110552. doi: 10.1016/j.mtcomm.2024.110552

    [17]

    Yuan L, Xiong J, Du Y, et al. Effects of pure Ti or Zr powder on microstructure and mechanical properties of Ti6Al4V and Ti2AlNb joints brazed with TiZrCuNi[J]. Materials Science and Engineering: A, 2020, 788: 139602. doi: 10.1016/j.msea.2020.139602

    [18]

    Tian H, He J, Hou J, et al. Analysis of the microstructure and mechanical properties of TiBw/Ti-6Al-4V Ti matrix composite joint fabricated using TiCuNiZr amorphous brazing filler metal[J]. Materials, 2021, 14(4): 875. doi: 10.3390/ma14040875

    [19]

    Cai J, Hu S, Liu H, et al. Microstructural evolution and mechanical properties of Ti2AlNb/GH99 superalloy brazed joints using TiZrCuNi amorphous filler alloy[J]. Aerospace, 2023, 10(1): 73. doi: 10.3390/aerospace10010073

    [20]

    Bai X, Liu M, Pang S, et al. Novel Ti–Zr–Co–Cu–M (M = Sn, V, Al) amorphous/nanocrystalline brazing fillers for joining Ti–6Al–4V alloy[J]. Materials Characterization, 2023, 196: 112607. doi: 10.1016/j.matchar.2022.112607

    [21]

    Liu D, Xu J, Li X, et al. Influence of Al foil interlayer on performance of vacuum diffusion bonding joint of 6061 aluminium alloy[J]. Journal of Iron and Steel Research International, 2024: 1-9.

    [22] 冯亮, 李金山, 崔予文, 等. Ti-Zr 二元合金在 β 相区的互扩散行为研究[J]. 稀有金属材料与工程, 2011, 40(4): 610 − 614.

    Feng Liang, Li Jinshan, Cui Yuwen, et al. Study on mutual diffusion behavior of Ti-Zr binary alloy in the β phase region[J]. Rare Metal Materials and Engineering, 2011, 40(4): 610 − 614.

    [23]

    Harish D, Vishwanadh B, Alam T, et al. Morphological evolution of transformation products and eutectoid transformation(s) in a hyper-eutectoid Ti-12 at% Cu alloy[J]. Acta Materialia, 2019, 168: 63 − 75. doi: 10.1016/j.actamat.2019.01.044

    [24] 刘以波. TA2 工业纯钛高温组织演变研究[D]. 上海: 上海交通大学, 2010.

    Liu, Yibo. Research on high-temperature microstructural evolution of TA2 industrial pure titanium[D]. Shanghai: Shanghai Jiao Tong University, 2010.

    [25]

    Lin Y, Jiangtao X, Yu P, et al. Microstructure and mechanical properties in the solid-state diffusion bonding joints of Ni3Al based superalloy[J]. Materials Science and Engineering: A, 2020, 772: 138670. doi: 10.1016/j.msea.2019.138670

    [26]

    Tewari R, Srivastava D, Dey G K, et al. Microstructural evolution in zirconium based alloys[J]. Journal of Nuclear Materials, 2008, 383(1): 153 − 171.

    [27]

    Ren H S, Ren X Y, Xiong H P, et al. Nano-diffusion bonding of Ti2AlNb to Ni-based superalloy[J]. Materials Characterization, 2019, 155: 109813. doi: 10.1016/j.matchar.2019.109813

    [28]

    Ganjeh E, Sarkhosh H, Bajgholi M, et al. Increasing Ti–6Al–4V brazed joint strength equal to the base metal by Ti and Zr amorphous filler alloys[J]. Materials characterization, 2012, 71: 31 − 40. doi: 10.1016/j.matchar.2012.05.016

  • 期刊类型引用(5)

    1. 王通,孟惠民,葛鹏飞,李全德,巩秀芳,倪荣,姜英,龚显龙,戴君,隆彬. 2Cr-1Ni-1.2Mo-0.2V钢在NH_4H_2PO_4溶液中的电化学腐蚀行为研究. 中国腐蚀与防护学报. 2022(04): 551-562 . 百度学术
    2. 苍雨,黄毓晖,翁硕,轩福贞. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响. 中国腐蚀与防护学报. 2021(03): 318-326 . 百度学术
    3. 黄毓晖,张建辉,胡语林,孙雯暄,徐宇斌,汪毅豪. 核电汽轮机转子堆焊焊接接头的电偶腐蚀行为及有限元仿真. 焊接学报. 2021(08): 33-39+99 . 本站查看
    4. 陈君,康凯,冯钜,熊长奇,曹丹,尹杰. 压水堆核电站结构材料的腐蚀行为研究进展. 西华大学学报(自然科学版). 2020(03): 104-112 . 百度学术
    5. 黄毓晖,司晓法,翁硕,轩福贞. 疲劳损伤对核电汽轮机焊接转子接头应力腐蚀开裂敏感性的影响. 焊接学报. 2020(04): 12-19+37+97-98 . 本站查看

    其他类型引用(3)

图(9)  /  表(3)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  3
  • PDF下载量:  19
  • 被引次数: 8
出版历程
  • 收稿日期:  2023-11-26
  • 网络出版日期:  2025-03-17
  • 刊出日期:  2025-03-24

目录

    /

    返回文章
    返回