高级检索

原位合成钎料Zr含量对钎焊接头组织与性能影响

秦建, 杨浩哲, 裴夤崟, 杨骄, 龙伟民, 廖志谦, 雷振

秦建, 杨浩哲, 裴夤崟, 杨骄, 龙伟民, 廖志谦, 雷振. 原位合成钎料Zr含量对钎焊接头组织与性能影响[J]. 焊接学报, 2025, 46(3): 27-35. DOI: 10.12073/j.hjxb.20231127003
引用本文: 秦建, 杨浩哲, 裴夤崟, 杨骄, 龙伟民, 廖志谦, 雷振. 原位合成钎料Zr含量对钎焊接头组织与性能影响[J]. 焊接学报, 2025, 46(3): 27-35. DOI: 10.12073/j.hjxb.20231127003
QIN Jian, YANG Haozhe, PEI Yinyin, YANG Jiao, LONG Weimin, LIAO Zhiqian, LEI Zhen. Effect of Zr content in in-situ synthesized brazing alloy on the microstructure and properties of brazed joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 27-35. DOI: 10.12073/j.hjxb.20231127003
Citation: QIN Jian, YANG Haozhe, PEI Yinyin, YANG Jiao, LONG Weimin, LIAO Zhiqian, LEI Zhen. Effect of Zr content in in-situ synthesized brazing alloy on the microstructure and properties of brazed joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 27-35. DOI: 10.12073/j.hjxb.20231127003

原位合成钎料Zr含量对钎焊接头组织与性能影响

基金项目: 国家重点研发计划项目(2021YFB3401100)
详细信息
    作者简介:

    秦建,博士研究生;主要研究方向是异种材料焊接冶金与焊接材料、焊接新工艺等领域的研究与开发;Email: qinjianzzu@163.com

    通讯作者:

    龙伟民,博士,博士研究生导师;Email: brazelong@163.com.

  • 中图分类号: TG 456

Effect of Zr content in in-situ synthesized brazing alloy on the microstructure and properties of brazed joints

  • 摘要:

    由于钛基钎料钎焊钛合金接头具有强度高、耐蚀性好和耐热性好等优点,因此在重载荷、强腐蚀等极端服役环境下的钛合金构件常用钛基钎料进行钎焊连接.文中针对钛合金钎焊出现的基体组织性能恶化和焊缝脆化等问题展开研究,设计了以Zr、Cu、Ni纯金属箔构成原位合成钎料的纯钛TA2真空钎焊机理和工艺研究,发现原位合成钎料钎焊接头的典型界面组织为母材/扩散层(Ti,Zr)2(Cu,Ni) + α-Ti共析组织/钎缝中心(共晶)化合物层/扩散层(Ti,Zr)2(Cu,Ni) + α-Ti共析组织/母材,自钎缝中心化合物层至两侧母材的显微硬度逐渐降低.结果表明,随着钎料Zr含量提高,扩散层厚度和钎缝总宽度先减小后增大,钎缝中心化合物层厚度先增大后减小,Zr26CuNi钎料的钎缝中心化合物层厚度最小,约为10 μm;随着钎料Zr含量提高,钎焊接头的剪切强度先减小后增大,Zr26CuNi钎料的钎焊接头剪切强度最大,平均值为207 MPa,接头断裂以脆性断裂为主,因此,Zr26CuNi钎料的钎焊接头性能较为优异,实现了原位合成钎料的成分优化.

    Abstract:

    The brazed joints obtained by welding titanium alloys with titanium-based brazing filler metal have the advantages of high strength, good corrosion resistance and good heat resistance. Therefore, titanium alloy components which brazed with titanium-based brazing alloys are commonly used in extreme service environments such as heavy loads and strong corrosion. In this paper, the deterioration of matrix microstructure and properties, the embrittlement of welding in titanium alloy brazing are studied. The vacuum brazing mechanism and process of pure titanium TA2 with Zr, Cu and Ni pure metal foils as in-situ synthesized brazing filler metal were designed. It was found that the typical interface structure of the brazed joint obtained by in-situ synthesis brazing alloy was base metal/diffusion layer (Ti, Zr)2(Cu, Ni) + α-Ti eutectoid structure / brazing seam center (eutectic) compound layer / diffusion layer (Ti, Zr)2(Cu, Ni) + α-Ti eutectoid structure / base metal. The microhardness gradually decreases from the compound layer in the center of the brazing seam to the base metal on both sides. The results show that with the increase of Zr content, the thickness of diffusion layer and the total width of brazing seam decrease first and then increase. The thickness of the compound layer in the center of the brazing seam increases first and then decreases. The thickness of the compound layer in the center of the brazing seam of Zr26CuNi brazing filler metal is the smallest, about 10 μm. The shear strength of the brazed joint decreases first and then increases with the increase of Zr content in the filler metal. Among them, the shear strength of Zr26CuNi brazing joint is the largest, with an average value of 207 MPa. The fracture of the joint is mainly brittle fracture. Therefore, the brazing joint performance of Zr26CuNi brazing alloy is excellent, and the composition optimization of in-situ synthesized brazing alloy is realized.

  • “十四五”规划明确指出强化国家战略科技力量,在“空天科技、深地深海等前沿领域,实施一批具有前瞻性、战略性的国家重大科技项目”,在此背景下,空天、潜艇、航母和舰载机等装备的升级发展对大尺寸、轻量化、耐高压和耐腐蚀板翅式换热器[1-3]精密钎焊制造提出了迫切需求[4-6].为了满足轻量化设计和适应极端服役环境,考虑将比强度高、耐蚀性好的钛合金材料用于板翅式换热器的加工制造,但作为一种压力容器,换热器隔板与翅片、封条的焊缝质量影响换热器的工作温度和工作压力,钎焊工艺和钎焊质量对换热器制造经济性、运行可靠性等具有重要影响,因此钛合金板翅式换热器加工制造的核心难点在于钛合金高可靠钎焊技术[7].当前,钛合金钎焊存在的主要问题和挑战在于基体组织性能恶化和焊缝脆化[8-12],因此,为满足钎缝质量、服役环境和生产成本等要求,必须开发耐腐蚀、高强韧和易加工的钎焊材料.

    已有学者使用Cu中间层、Ni中间层或其复合中间层可实现钛合金的瞬间液相焊连接[13-15],结果表明,中间层材料厚度减小有利于接头界面组织均匀化,使得力学性能提高,中间层材料厚度减小在钎焊大型结构时能够有效减少钎料用量,对于降低制造成本、实现结构轻量化具有重大意义[16-21].

    针对钛合金钎焊过程存在的钎焊接头脆性大和高性能钎料难加工等难点,选用各类中间层材料时遵从最少钎料用量原则,选择市面上易获得的最薄金属箔.为了降低反应温度,利用原位合成技术,并在传统Cu(Ni)中间层的基础上引入能够降低反应温度的Zr元素进行TA2纯钛的真空钎焊连接[22],探究原位合成钎料中Zr含量钎焊接头组织与性能的影响规律;开展钛合金钎焊材料和钎焊工艺研究,从而实现原位合成钎料成分优化,不仅为钛合金钎焊的理论完善和技术发展提供了一种新的思路,也在提高钛合金换热器可靠性、降低制造成本等方面具有一定实际应用价值.

    试验选用的母材为热轧的工业纯钛TA2板材,化学成分见表1,将TA2板材切割为30 mm × 50 mm × 10 mm和25 mm × 30 mm × 10 mm的试板,打磨待焊表面并去除油污后烘干备用.使用的钎料是由一定厚度的Zr、Cu、Ni纯金属箔按照Zr-Cu-Ni的顺序叠置装配构成原位合成钎料,其中铜、镍纯金属箔厚度均为10 μm,作为变量的锆金属箔厚度分别为10、20和30 μm.用以实现不同Zr含量原位合成钎料的需求,具体成分分别为Zr26CuNi、Zr42CuNi、Zr52CuNi见表2.为便于钎料预置和试样装配,使用储能点焊机将清洗后的各金属箔按照Zr-Cu-Ni顺序进行点焊组装.

    表  1  TA2的主要化学成分(质量分数,%)
    Table  1.  Chemical compositions of TA2
    FeCNHO其他Ti
    0.0510.0090.0100.0010.083<0.10余量
    下载: 导出CSV 
    | 显示表格
    表  2  原位合成ZrCuNi钎料的规格与名义成分
    Table  2.  Specification and nominal compositions of in-situ synthesized ZrCuNi brazing alloy
    钎料 金属箔厚度l/μm 原位合成钎料成分w(质量分数, %)
    Zr Cu Ni Zr Cu Ni
    Zr26CuNi 10 10 10 26 37 37
    Zr42CuNi 20 10 10 42 29 29
    Zr52CuNi 30 10 10 52 24 24
    下载: 导出CSV 
    | 显示表格

    试验过程中不对钎焊接头施加额外压力,仅靠母材自重实现其与钎料的接触反应和扩散,剪切和拉伸试样的接头设计,如图1所示.钎焊试样装配完成后,将其移入真空钎焊炉中进行焊接试验,具体工艺参数为钎焊温度880 ℃,保温时间30 min,焊后随炉冷却至100 ℃以下出炉.

    图  1  钎焊接头装配示意图(mm)
    Figure  1.  Assembly schematic diagram of brazed joints. (a) shear test specimen joint; (b) tensile test specimen joint

    将焊接完成后的试样使用电火花数控线切割机进行金相试样取样,并按照标准制备金相试样,经磨抛后使用中性洗涤剂和大量清水冲洗掉表面残留二氧化硅颗粒和有关反应物,洗净后置于酒精溶液中超声清洗5 min,随后取出冲洗后烘干.采用扫描电镜及配带的能谱仪对焊接接头的微观组织和断口形貌进行分析测试.参照国家标准GB/T 4340.1—2009《金属材料维氏硬度试验第1部分:试验方法》和GB/T 11363-2008《钎焊接头强度试验方法》利用维氏硬度计和万能力学试验机对接头显微硬度和剪切强度进行测试,根据图1的钎焊接头分别按照图2图3取样标准形状尺寸及剪切工装夹具,每组钎焊接头进行3次平行试验,结果取其平均值.

    图  2  钎焊接头拉伸试样
    Figure  2.  Brazed joint tensile test specimen. (a) sampling dimensions; (b) tensile test specimen
    图  3  剪切试验工装及试样取样示意图
    Figure  3.  Schematic diagram of shear test fixture and specimen sampling. (a) shear test fixture; (b) sampling dimensions

    分别采用Zr26CuNi、Zr42CuNi和Zr52CuNi作为原位合成钎料钎焊工业纯钛TA2,得到钎焊接头的显微组织,如图4所示.可以看到3种钎料都与母材形成良好冶金结合,焊缝中未出现未熔合、夹杂等焊接缺陷,表明在880 ℃条件下3种钎料都能通过接触反应和扩散作用形成低熔点液相,且对母材润湿性较好.此外,不同Zr含量的钎料焊接接头界面组织有明显不同,在焊缝尺寸、物相组成和组织形貌等方面都有较大差异.根据接头界面组织形貌特点,将焊缝分为2个区域,分别为焊缝中心I区和扩散层II区.

    图  4  3种含Zr钎料钎焊接头的显微组织及接头组织放大
    Figure  4.  Microstructure and magnified micrographs of three brazed joints using Zr-containing brazing filler metals. (a) Zr26CuNi brazing filler metal; (b) Zr42CuNi brazing filler metal; (c) Zr52CuNi brazing filler metal

    图4(a)为Zr26CuNi钎料的钎焊接头显微组织,其中I区的组织为连续分布的窄带状白色相,是由中间层与母材发生接触反应形成的低熔点液相,此外该组织(Ti,Zr)与(Cu,Ni)的原子比约为2∶1,虽然其Zr含量较少,但是其中含有10.87%的Ni元素,与Ti2Cu化合物成分具有较大差异,因此判断此区域为低Zr含量的(Ti,Zr)2(Cu,Ni)金属间化合物.II区结合表3中的EDS能谱分析推测其应为II区是液相与母材的扩散反应区,主要由片层状相间分布的黑色和白色相构成,在880 ℃条件下,固溶了一定Cu和Ni元素的β-Ti在降温过程中发生β-Ti→α-Ti和(Ti,Zr)2(Cu,Ni)的共析转变,因此,该区域组织为共析反应产物α-Ti和(Ti,Zr)2(Cu,Ni).此外,靠近母材的II区分布有各种取向的黑色针状组织,针状组织中仅有Ti元素存在.

    表  3  含Zr钎料钎焊TA2接头中各微区的化学成分(质量分数,%)
    Table  3.  Chemical compositions of microregions in brazed joints of TA2 using Zr-containing brazing filler metal
    钎料成分微区TiZrCuNi可能的相
    Zr26CuNiA100.00α-Ti
    B64.634.8019.7010.87(Ti,Zr)2(Cu,Ni)
    C87.744.283.094.89共析反应产物
    Zr42CuNiA148.6122.0916.0513.25(Ti,Zr)2(Cu,Ni)
    B190.076.811.641.48共析反应产物
    C183.918.773.773.55共析反应产物
    D196.043.96α-Ti
    Zr52CuNiA295.414.59α -Ti
    B263.835.6322.827.72(Ti,Zr)2(Cu,Ni)
    C249.5619.3414.9716.13(Ti,Zr)2(Cu,Ni)
    D284.967.776.593.68共析反应产物
    E298.981.02α-Ti
    下载: 导出CSV 
    | 显示表格

    图4(b)为Zr42CuNi钎料的接头组织,I区厚度约80 μm,在凝固过程发生L→(Ti,Zr)2(Cu,Ni) + β-Ti的共晶反应,分布的白色相成分接近(Ti,Zr)2(Cu,Ni)金属间化合物,但与图4(a3)中B点相比其Zr含量更高.黑色相中Cu、Ni含量很低,是冷却过程中β-Ti发生共析反应得到的细小共析组织α-Ti + (Ti,Zr)2(Cu,Ni).中间层接头II区的组织形貌见图4(b2),该区域与Zr26CuNi中间层接头的II区类似,主要反应相仍是片层相间的共析反应产物α-Ti + (Ti,Zr)2(Cu,Ni),但还有部分白色相渗入到两侧母材仅形成极少量细小的针状α-Ti组织.进一步提高钎料的Zr含量,Zr52CuNi钎料的接头见图4(c1)I区的宽度减少到37 μm,这可能是Zr含量提高后形成的液相熔点进一步降低,在同样焊接温度下其流动性更好,液相流失后使焊缝厚度减小,在冷却凝固过程形成了较薄的共晶反应层.图4(c1)和表3中显示I区由共晶相组成,但其共晶中同时存在白色高Zr含量>19%和灰色低Zr含量<6%的(Ti,Zr)2(Cu,Ni)化合物.II扩散区组织中分布有灰色细条状组织,其成分接近(Ti, Zr)2(Cu, Ni)化合物.根据Harish等人[23]的研究结果,过共析Ti-12Cu合金在共析反应温度以上保温时,先共析Ti2Cu在等温过程以块状结节形态析出,表明临近熔融液相的Cu和Ni元素经扩散进入母材中,使得扩散层α-Ti母材转变为固溶了一定Cu和Ni元素的β-Ti,由于该区域临近钎缝中心熔融液相,Cu和Ni元素在其中的含量较高,在此中已超过β-Ti的共析点,在保温过程中,β-Ti中的Cu和Ni元素含量不断提高,在其含量高于β-Ti最大固溶度时,细条状的先共析(Ti, Zr)2(Cu, Ni)化合物在原始β-Ti晶界和晶内析出.

    为了直观描述钎缝界面反应产物形成过程,根据刘以波[24]对纯钛α、β转变的原位观察结果,并结合Ti(Zr)—Cu(Ni)相图分析图4钎焊接头的显微组织分布情况,提出了钎缝界面组织形成和演变机理,如图5所示.钎焊过程中,叠层金属箔及其与母材之间发生接触扩散反应,形成一低熔点组元时熔化形成熔融液相,从而导致部分TA2母材发生溶解使得Ti元素由母材过渡到液态钎料.Zr、Cu和Ni元素向母材扩散使扩散层发生α-Ti→β-Ti转变,β-Ti晶粒在α-Ti晶内以一系列平行针状形式生长见图5(b),β-Ti的形成加快了元素向母材扩散的速率,在钎焊温度下,扩散层由固溶了一定量Zr,Cu和Ni元素的β-Ti构成,扩散层前沿的Zr,Cu和Ni元素含量较低,近钎缝中心区域其含量较高.

    图  5  钎焊接头界面反应产物形成和演变示意图
    Figure  5.  Schematic diagram of formation and evolution of interfacial reaction products in brazed joints. (a) brazing heating process; (b) melting of the brazing filler metal and formation of the liquid phase; (c) cooling process of a brazed joint using Zr26CuNi brazing filler metal; (d) cooling process of a brazed joint using Zr52CuNi brazing filler metal; (e) phase diagram of Ti(Zr)-Cu(Ni)

    在冷却过程中,Zr26CuNi接头的钎缝中心形成连续带状分布的低Zr含量(Ti, Zr)2(Cu, Ni)化合物.对于Zr52CuNi钎料的钎焊接头,在冷却过程中,液态钎料凝固过程中发生L→(Ti, Zr)2(Cu, Ni) + β共晶反应,随着温度降低β相发生共析反应分解为α + (Ti, Zr)2(Cu, Ni)化合物,但发生共析反应后组织更为细小,在电镜下难以分辨.冷却过程中,扩散区β相发生共析反应分解为片层状相间的(Ti, Zr)2(Cu, Ni)化合物和α -Ti,扩散区组织放大见图4(a2)中仍可观察到保持原始板条状β晶粒形态的共析产物团簇,具有相同取向的共析产物团簇显示了相变前α晶粒的形态.当由于扩散层成分偏析造成β相成分偏离共析点时,先共析(Ti,Zr)2(Cu,Ni)或先共析α-Ti发生析出,在Zr52CuNi中间层焊缝组织中可以观察到这一点(图4(c1)).扩散区前沿β相中Cu和Ni含量较低,发生亚共析反应分解,先共析α相以针状长大,形成了一系列平行且具有一定取向的针状α-Ti,剩余β-Ti在达到共析点后发生共析反应分解为片层相间的α + (Ti,Zr)2(Cu,Ni)共析反应产物.

    接头显微硬度的测量结果,如图6所示.TA2母材在经历焊接热循环后硬度为150 HV0.1,焊缝中心共晶反应层硬度可达500 HV0.1以上,Zr26CuNi钎料的焊缝中心(Ti, Zr)2(Cu, Ni)化合物宽度很窄,此处硬度为351 HV0.1,相较于Zr42CuNi钎料和Zr52CuNi钎料接头的连续宽带状化合物有明显降低.Zr26CuNi钎料和Zr52CuNi钎料焊缝扩散区共析组织的硬度相近,平均约为280 HV0.1,针状组织区域存在部分具有塑韧性的α-Ti,导致其硬度进一步降低(210 HV0.1).Yuan的计算结果指出α相、扩散区和两种(Ti,Zr)2(Cu,Ni)化合物的弹性回复率分别为38.3%、31.6%、23.6%和24.2%,由此可见(Ti, Zr)2(Cu, Ni)化合物具有硬度高、弹性模量高的脆性特点,当其连续分布时在载荷作用下很快会产生极大的应力集中,从而使得裂纹容易在其中产生和扩展[25].

    图  6  钎缝维氏硬度
    Figure  6.  Vickers hardness of brazing seam

    对接头进行剪切试验,如图7所示,可以发现随着钎料Zr含量提高,钎焊接头的剪切强度先降低后增大,Zr26CuNi钎料钎焊接头的剪切强度最大,平均值为207 MPa.

    图  7  钎料Zr含量对钎焊接头剪切强度的影响
    Figure  7.  Influence of Zr content in the brazing filler metal on the shear strength of brazed joints

    剪切强度差异表明各接头的断裂行为和机理有所不同,各接头剪切试验中裂纹的扩展路径,如图8所示. Zr26CuNi钎料钎焊接头的裂纹沿中心金属间化合物带和扩散区扩展,这是由于金属间化合物硬度高、脆性大,容易成为裂纹的起点,然而由于该化合物带宽度窄,在扩展过程中会经过扩散区共析组织,片层状相间组织与纳米金属间化合物能够钉扎位错并增强接头的力学性能[26-27],因此其强度最高.Zr42CuNi钎料钎焊接头的化合物层宽度大,硬而脆的连续带状化合物在载荷作用下容易引起应力集中并成为裂纹源,从而接头极易发生脆断,因此其强度较低.Zr52CuNi 钎料钎焊接头的金属间化合物层宽度介于Zr27CuNi 和Zr42CuNi 之间,化合物层较窄使得裂纹难以完全经由此扩展。因此,施加剪切载荷时断裂发生在化合物带与共析组织的界面处,界面处共析组织对裂纹扩展起阻碍作用,因此其强度相较于Z42CuNi钎料钎焊接头有所提高.

    图  8  不同含Zr钎料钎焊接头断裂路径横截面图
    Figure  8.  Cross-sectional images of the fracture path of brazed joints using different Zr-containing brazing filler metals. (a) Zr26CuNi; (b) Zr42CuNi; (c) Zr52CuNi

    各接头剪切断口的形貌,如图9所示. Zr26CuNi钎料钎焊接头断口形貌有河流状花样的解理断裂,又有大量分布的圆形韧窝和拉长韧窝特征,说明在断裂过程中接头能够吸收部分能量,接头具有一定韧性,由此判断该接头整体剪切断裂模式为以脆性断裂为主,断裂发生在少部分母材区域时为韧性断裂.Zr42CuNi钎料和Zr52CuNi钎料钎焊接头的断口表现出的小平面解理形貌是(Ti,Zr)2(Cu,Ni)化合物层断裂的典型特征[28],接头发生明显脆性断裂.

    图  9  不同Zr含量对钎焊接头剪切断口形貌的影响
    Figure  9.  Effect of different Zr content on the shear fracture morphology of brazed joints. (a) Zr26CuNi of cleavage position; (b) Zr26CuNi of ligamentous fossa position; (c) Zr42CuNi; (d) Zr52CuNi

    (1) 在钎焊温度880 ℃、保温时间30 min的工艺条件下,使用叠层金属箔构成的原位合成ZrCuNi钎料对TA2纯钛进行真空钎焊可得到成形良好的接头,接头典型界面组织为:TA2/共析反应产物(层片状相间α -Ti + (Ti,Zr)2(Cu,Ni))/(Ti,Zr)2(Cu,Ni)金属间化合物层或共晶反应层/共析反应产物(层片状相间α-Ti + (Ti,Zr)2(Cu,Ni))/TA2.

    (2) ZrCuNi钎料的Zr含量对接头的界面组织有明显影响.当Zr箔厚度为10 μm时,焊缝中心形成宽度为10 μm的带状低Zr含量的(Ti,Zr)2(Cu,Ni)金属间化合物层,扩散区由共析反应产物和针状α-Ti组成;当Zr箔厚度提高到20 μm时,焊缝中心形成了含有大量(Ti, Zr)2(Cu, Ni)化合物的共晶组织,熔融液相对母材溶蚀程度增大,共晶层厚度增加到80 μm;进一步提高Zr箔厚度时,共晶反应层厚度减小到37 μm.

    (3) 剪切强度和断裂模式差异与焊缝中心化合物层(或共晶反应层)的厚度有关,随着钎料Zr含量提高,钎缝中心的化合物层(或共晶反应层)厚度先增大后减小,接头抗剪强度先下降后上升,在Zr箔厚度为10 μm时有最大平均剪切强度207 MPa.接头断裂以脆性断裂为主,断裂裂纹经过母材时表现出一定韧性.随着Zr含量提高,接头呈脆性断裂,Zr箔厚度分别为20 μm和30 μm的原位合成钎料钎焊接头平均剪切强度分别为92 MPa和135 MPa.

  • 图  1   钎焊接头装配示意图(mm)

    Figure  1.   Assembly schematic diagram of brazed joints. (a) shear test specimen joint; (b) tensile test specimen joint

    图  2   钎焊接头拉伸试样

    Figure  2.   Brazed joint tensile test specimen. (a) sampling dimensions; (b) tensile test specimen

    图  3   剪切试验工装及试样取样示意图

    Figure  3.   Schematic diagram of shear test fixture and specimen sampling. (a) shear test fixture; (b) sampling dimensions

    图  4   3种含Zr钎料钎焊接头的显微组织及接头组织放大

    Figure  4.   Microstructure and magnified micrographs of three brazed joints using Zr-containing brazing filler metals. (a) Zr26CuNi brazing filler metal; (b) Zr42CuNi brazing filler metal; (c) Zr52CuNi brazing filler metal

    图  5   钎焊接头界面反应产物形成和演变示意图

    Figure  5.   Schematic diagram of formation and evolution of interfacial reaction products in brazed joints. (a) brazing heating process; (b) melting of the brazing filler metal and formation of the liquid phase; (c) cooling process of a brazed joint using Zr26CuNi brazing filler metal; (d) cooling process of a brazed joint using Zr52CuNi brazing filler metal; (e) phase diagram of Ti(Zr)-Cu(Ni)

    图  6   钎缝维氏硬度

    Figure  6.   Vickers hardness of brazing seam

    图  7   钎料Zr含量对钎焊接头剪切强度的影响

    Figure  7.   Influence of Zr content in the brazing filler metal on the shear strength of brazed joints

    图  8   不同含Zr钎料钎焊接头断裂路径横截面图

    Figure  8.   Cross-sectional images of the fracture path of brazed joints using different Zr-containing brazing filler metals. (a) Zr26CuNi; (b) Zr42CuNi; (c) Zr52CuNi

    图  9   不同Zr含量对钎焊接头剪切断口形貌的影响

    Figure  9.   Effect of different Zr content on the shear fracture morphology of brazed joints. (a) Zr26CuNi of cleavage position; (b) Zr26CuNi of ligamentous fossa position; (c) Zr42CuNi; (d) Zr52CuNi

    表  1   TA2的主要化学成分(质量分数,%)

    Table  1   Chemical compositions of TA2

    FeCNHO其他Ti
    0.0510.0090.0100.0010.083<0.10余量
    下载: 导出CSV

    表  2   原位合成ZrCuNi钎料的规格与名义成分

    Table  2   Specification and nominal compositions of in-situ synthesized ZrCuNi brazing alloy

    钎料 金属箔厚度l/μm 原位合成钎料成分w(质量分数, %)
    Zr Cu Ni Zr Cu Ni
    Zr26CuNi 10 10 10 26 37 37
    Zr42CuNi 20 10 10 42 29 29
    Zr52CuNi 30 10 10 52 24 24
    下载: 导出CSV

    表  3   含Zr钎料钎焊TA2接头中各微区的化学成分(质量分数,%)

    Table  3   Chemical compositions of microregions in brazed joints of TA2 using Zr-containing brazing filler metal

    钎料成分微区TiZrCuNi可能的相
    Zr26CuNiA100.00α-Ti
    B64.634.8019.7010.87(Ti,Zr)2(Cu,Ni)
    C87.744.283.094.89共析反应产物
    Zr42CuNiA148.6122.0916.0513.25(Ti,Zr)2(Cu,Ni)
    B190.076.811.641.48共析反应产物
    C183.918.773.773.55共析反应产物
    D196.043.96α-Ti
    Zr52CuNiA295.414.59α -Ti
    B263.835.6322.827.72(Ti,Zr)2(Cu,Ni)
    C249.5619.3414.9716.13(Ti,Zr)2(Cu,Ni)
    D284.967.776.593.68共析反应产物
    E298.981.02α-Ti
    下载: 导出CSV
  • [1] 李治, 陈文炯, 张天恩. 翅片打孔对板翅式换热器传热性能和流场影响[J]. 大连理工大学学报, 2021, 61(1): 60 − 66. doi: 10.7511/dllgxb202101009

    Li Zhi, Chen Wenjiong, Zhang Tianen. Influence of fin perforation on heat transfer performance and flow field of plate-fin heat exchangers[J]. Journal of Dalian University of Technology, 2021, 61(1): 60 − 66. doi: 10.7511/dllgxb202101009

    [2] 李悦, 王建峰, 马龙飞, 等. 保温时间对钛合金板翅式换热器真空钎焊过程温度场及残余应力的影响[J]. 焊接学报, 2024, 45(2): 33 − 40. doi: 10.12073/j.hjxb.20230303001

    Li Yue, Wang Jianfeng, Ma Longfei, et al. Effect of holding time on temperature field and residual stress in the vacuum brazing process of titanium alloy plate-fin heat exchangers[J]. Transactions of the China Welding Institution, 2024, 45(2): 33 − 40. doi: 10.12073/j.hjxb.20230303001

    [3] 龙伟民, 赵月, 钟素娟, 等. 铜/铝异质钎焊连接界面金属间化合物的研究进展(英文)[J]. 稀有金属材料与工程, 2021, 50(1): 7 − 13.

    Long Weimin, Zhao Yue, Zhong Sujuan, et al. Progress of intermetallic compounds at the interface of copper/aluminum heterogeneous brazed joints[J]. Rare Metal Materials and Engineering, 2021, 50(1): 7 − 13.

    [4] 龙伟民, 李胜男, 都东, 等. 钎焊材料形态演变及发展趋势(英文)[J]. 稀有金属材料与工程, 2019, 48(12): 3781 − 3790.

    Long Weimin, Li Shengnan, Du Dong, et al. Morphological evolution and development trend of brazing materials[J]. Rare Metal Materials and Engineering, 2019, 48(12): 3781 − 3790.

    [5]

    Chen C R, Liu C, Wang Q T, et al. Effects of heat input on layer heterogeneity of selective laser melting Ti-6Al-4V components[J]. China Welding, 2023, 32(3): 51 − 66.

    [6]

    Zhang L, Long W, Du D, et al. The microstructure and wear properties of diamond composite coatings on TC4 made by induction brazing[J]. Diamond and Related Materials, 2022, 125: 109032. doi: 10.1016/j.diamond.2022.109032

    [7] 张启运, 庄鸿寿. 钎焊手册(第3版)[M]. 机械工业出版社, 2018.

    Zhang Qiyun, Zhuang Hongshou. Handbook of brazing and soldering (the third edition)[M]. China Machine Press, 2018.

    [8]

    Long W. Highly reliable joints between dissimilar materials[J]. Journal of Iron and Steel Research International, 2024, 31(10): 2327 − 2328. doi: 10.1007/s42243-024-01358-4

    [9]

    Xia Y, Dong H, Zhang R, et al. Interfacial microstructure and shear strength of Ti6Al4V alloy/316 L stainless steel joint brazed with Ti33. 3Zr16. 7Cu50− xNix amorphous filler metals[J]. Materials & Design, 2020, 187: 108380.

    [10]

    Xia Y, Ma Z, Du Q, et al. Microstructure and properties of the TiAl/GH3030 dissimilar joints vacuum-brazed with a Ti-based amorphous filler metal[J]. Materials Characterization, 2024, 207: 113520. doi: 10.1016/j.matchar.2023.113520

    [11] 郭民, 雷玉珍, 赵健, 等. Cu75Pt钎料钎焊Ti60与TC4接头界面组织及性能[J]. 焊接学报, 2022, 43(2): 40 − 44.

    Guo Min, Lei Yuzhen, Zhao Jian, et al. Interfacial microstructure and mechanical property of Ti60 and TC4 joint brazed with Cu75Pt filler metal[J]. Transactions of The China Welding Institution, 2022, 43(2): 40 − 44.

    [12]

    Jing Y, Xiong H, Shang Y, et al. Design TiZrCuNi filler materials for vacuum brazing TA15 alloy[J]. Journal of Manufacturing Processes, 2020, 53: 328 − 335. doi: 10.1016/j.jmapro.2020.02.021

    [13]

    Lu Q, Huang J, Ding Z, et al. Enhanced mechanical properties of TZM joint brazed at high temperature using Mo-Ni filler metal with Boron addition[J]. Welding in the World, 2024: 1-9.

    [14] 龙伟民, 张冠星, 张青科, 等. 钎焊过程原位合成高强度银钎料[J]. 焊接学报, 2015, 36(11): 1 − 4.

    Long Weimin, Zhang Guanxing, Zhang Qingke, et al. In situ synthesis of high-strength silver brazing material by brazing process[J]. Transactions of the China Welding Institution, 2015, 36(11): 1 − 4.

    [15]

    Marinho C, Toptan F, Guedes A, et al. Electrochemical response of Ti joints vacuum brazed with TiCuNi, AgCu, and Ag fillers[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(4): 999 − 1011. doi: 10.1016/S1003-6326(21)65556-5

    [16]

    Wang L, Li J, Liu K, et al. Study on microstructure and mechanical properties of vacuum brazing TC4 titanium alloy with Ti-37.5 Zr-15Cu-10Ni amorphous filler metal[J]. Materials Today Communications, 2024, 41: 110552. doi: 10.1016/j.mtcomm.2024.110552

    [17]

    Yuan L, Xiong J, Du Y, et al. Effects of pure Ti or Zr powder on microstructure and mechanical properties of Ti6Al4V and Ti2AlNb joints brazed with TiZrCuNi[J]. Materials Science and Engineering: A, 2020, 788: 139602. doi: 10.1016/j.msea.2020.139602

    [18]

    Tian H, He J, Hou J, et al. Analysis of the microstructure and mechanical properties of TiBw/Ti-6Al-4V Ti matrix composite joint fabricated using TiCuNiZr amorphous brazing filler metal[J]. Materials, 2021, 14(4): 875. doi: 10.3390/ma14040875

    [19]

    Cai J, Hu S, Liu H, et al. Microstructural evolution and mechanical properties of Ti2AlNb/GH99 superalloy brazed joints using TiZrCuNi amorphous filler alloy[J]. Aerospace, 2023, 10(1): 73. doi: 10.3390/aerospace10010073

    [20]

    Bai X, Liu M, Pang S, et al. Novel Ti–Zr–Co–Cu–M (M = Sn, V, Al) amorphous/nanocrystalline brazing fillers for joining Ti–6Al–4V alloy[J]. Materials Characterization, 2023, 196: 112607. doi: 10.1016/j.matchar.2022.112607

    [21]

    Liu D, Xu J, Li X, et al. Influence of Al foil interlayer on performance of vacuum diffusion bonding joint of 6061 aluminium alloy[J]. Journal of Iron and Steel Research International, 2024: 1-9.

    [22] 冯亮, 李金山, 崔予文, 等. Ti-Zr 二元合金在 β 相区的互扩散行为研究[J]. 稀有金属材料与工程, 2011, 40(4): 610 − 614.

    Feng Liang, Li Jinshan, Cui Yuwen, et al. Study on mutual diffusion behavior of Ti-Zr binary alloy in the β phase region[J]. Rare Metal Materials and Engineering, 2011, 40(4): 610 − 614.

    [23]

    Harish D, Vishwanadh B, Alam T, et al. Morphological evolution of transformation products and eutectoid transformation(s) in a hyper-eutectoid Ti-12 at% Cu alloy[J]. Acta Materialia, 2019, 168: 63 − 75. doi: 10.1016/j.actamat.2019.01.044

    [24] 刘以波. TA2 工业纯钛高温组织演变研究[D]. 上海: 上海交通大学, 2010.

    Liu, Yibo. Research on high-temperature microstructural evolution of TA2 industrial pure titanium[D]. Shanghai: Shanghai Jiao Tong University, 2010.

    [25]

    Lin Y, Jiangtao X, Yu P, et al. Microstructure and mechanical properties in the solid-state diffusion bonding joints of Ni3Al based superalloy[J]. Materials Science and Engineering: A, 2020, 772: 138670. doi: 10.1016/j.msea.2019.138670

    [26]

    Tewari R, Srivastava D, Dey G K, et al. Microstructural evolution in zirconium based alloys[J]. Journal of Nuclear Materials, 2008, 383(1): 153 − 171.

    [27]

    Ren H S, Ren X Y, Xiong H P, et al. Nano-diffusion bonding of Ti2AlNb to Ni-based superalloy[J]. Materials Characterization, 2019, 155: 109813. doi: 10.1016/j.matchar.2019.109813

    [28]

    Ganjeh E, Sarkhosh H, Bajgholi M, et al. Increasing Ti–6Al–4V brazed joint strength equal to the base metal by Ti and Zr amorphous filler alloys[J]. Materials characterization, 2012, 71: 31 − 40. doi: 10.1016/j.matchar.2012.05.016

图(9)  /  表(3)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  3
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-26
  • 网络出版日期:  2025-03-17
  • 刊出日期:  2025-03-24

目录

/

返回文章
返回