高级检索

随焊旋转冲击抑制6061-T6铝合金接头热影响区软化行为

张勇, 李树, 卢杰, 唐家成, 尚滨, 荆旭

张勇, 李树, 卢杰, 唐家成, 尚滨, 荆旭. 随焊旋转冲击抑制6061-T6铝合金接头热影响区软化行为[J]. 焊接学报, 2025, 46(3): 104-111. DOI: 10.12073/j.hjxb.20231121003
引用本文: 张勇, 李树, 卢杰, 唐家成, 尚滨, 荆旭. 随焊旋转冲击抑制6061-T6铝合金接头热影响区软化行为[J]. 焊接学报, 2025, 46(3): 104-111. DOI: 10.12073/j.hjxb.20231121003
ZHANG Yong, LI Shu, LU Jie, TANG Jiacheng, SHANG Bin, JING Xu. Softening behavior in the heat-affected zone of 6061-T6 aluminum alloy joints inhibited by rotational impact with welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 104-111. DOI: 10.12073/j.hjxb.20231121003
Citation: ZHANG Yong, LI Shu, LU Jie, TANG Jiacheng, SHANG Bin, JING Xu. Softening behavior in the heat-affected zone of 6061-T6 aluminum alloy joints inhibited by rotational impact with welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 104-111. DOI: 10.12073/j.hjxb.20231121003

随焊旋转冲击抑制6061-T6铝合金接头热影响区软化行为

基金项目: 辽宁省教育厅基本科研项目(LJ212410147012);山东方大杭萧钢构科技有限公司技术开发项目(24-2519)
详细信息
    作者简介:

    张勇,博士,副教授;主要从事焊接结构设计研究;Email: zhangyongdiyi@163.com

  • 中图分类号: TG 407

Softening behavior in the heat-affected zone of 6061-T6 aluminum alloy joints inhibited by rotational impact with welding

  • 摘要:

    针对6061-T6铝合金热影响区在焊接过程中,因局部加热峰值温度过高所导致的过时效软化问题,提出一种在焊接过程中采用随焊旋转冲击方法,对焊接接头过时效软化区进行加载而抑制焊接接头软化的新思路. 对随焊旋转冲击工艺作用下的接头热影响区,进行显微组织和硬度测试.结果表明,在随焊旋转冲击作用下,接头热影响区硬度明显提高,软化区内析出相尺寸减小且数量增加,软化程度得到抑制,采用Material Studio软件分析理想条件下6061铝合金主要的时效析出相相变与应力之间的关系,β″相和β相在压力下的稳定性较好,β′相对压力更加敏感,在一定压力范围内发生了晶格常数畸变;随着作用力的增大,时效析出序列发生了改变.

    Abstract:

    In response to the issue of over-aging softening in the heat-affected zone (HAZ) of 6061-T6 aluminum alloy during welding, which is caused by excessively high local peak temperatures, a novel approach is proposed. This method involves applying a rotational impact during the welding process to the over-aging softened zone of the weld joint, thereby inhibiting the softening of the weld joint. Microstructural and hardness tests were conducted on the HAZ of the joint under the influence of the rotational impact during welding. The results indicate that the hardness of the HAZ significantly increases under the rotational impact, with a reduction in the size and an increase in the number of precipitated phases within the softened zone, effectively mitigating the degree of softening. Using Material Studio software, the relationship between the main aging precipitation phase transformation and stress in 6061 aluminum alloy under ideal conditions was analyzed. The computational results show that the β″ and β phases exhibit good stability under pressure, while the β′ phase is more sensitive to pressure, undergoing lattice constant distortion within a certain pressure range. As the applied force increases, the sequence of aging precipitation is altered.

  • 6061铝合金以其高比强度、良好的成形性和耐腐蚀性能,被广泛应用于现代航空航天、汽车等交通运输行业中[1-3]. 由于6061铝合金材料本身的时效强化机制,导致其对焊接热输入敏感[2],在TIG焊、MIG焊等常用的焊接方法中,焊接接头易出现明显软化现象,严重影响了焊接接头的力学性能[4-5]. 目前有关改善铝合金接头热影响区软化现象的方法主要有控制焊接热输入和施加外应力,采用低热输入焊接方法生产的接头的力学性能虽然有所提高[6],Hu等人[7]研究指出,FSW焊接过程中的低热输入量,会导致材料的塑性流动能力降低,从而引入焊接缺陷. 同样的,CMT技术由于其低热输入,加工工件厚度也被限制在3 mm以内[8];范成磊等人[9]采用随焊冲击碾压法使得铝合金接头组织得到改善,该研究更多关注接头力学性能的变化,没有解释加载应力对接头组织中时效相析出行为的影响;Fu等人[10]研究了外应力对2xxx系铝合金θ″相形貌及析出行为的影响,研究表明,施加外应力可使铝合金中的θ″相细小且数量更多,其硬化效果明显强于无应力时效,这是由于细小且密集的θ″相进一步提高了析出强化作用.

    由相律公式可知,在一定压力下材料可以发生相变或产生新的相,从而改变材料的结构和性质[11-12]. 张勇等人[13]使用随焊旋转冲击抑制30CrMnSi接头热影响区软化中发现,压力能够促使作用区域中的组织发生转变. 从施加外应力的角度出发,采用随焊旋转冲击法对处于高温的6061-T6铝合金软化区域进行处理,阐明随焊旋转冲击工艺抑制6061-T6铝合金热影响区的软化效果及其规律,并采用Material studio软件进行第一性原理计算,进一步探究在不同压力下6061铝合金的时效析出序列的变化规律以及析出强化相之间的转变关系,明确压应力调控铝合金时效析出行为的机理.

    试验采用150 mm × 80 mm × 3 mm的6061-T6铝合金板材进行随焊旋转冲击试验,试件化学成分见表1. 随焊旋转冲击设备,如图1所示. 焊接方法选用钨极氩弧焊,焊接电压为15 V,焊接电流为100 A,焊接速度为0.3 m/min,氩气流量为10 L/min.

    表  1  6061铝合金化学成分(质量分数,%)
    Table  1.  Chemical compositions of 6061 aluminum alloy
    MgSiCuFeMnCrZnAl
    1.070.640.250.390.080.150.15余量
    下载: 导出CSV 
    | 显示表格
    图  1  随焊旋转冲击设备示意图
    1. 电锤冲击装置 2. 十字滑台 3. 支架 4. 工作滑台 5. 底座 6. 焊枪
    Figure  1.  Schematic diagram of rotating impact equipment with welding

    将待焊板材固定到工作滑台,并调整工件、冲击锤头和焊枪三者之间的相对距离,随焊旋转冲击设备实物图,如图1所示. 焊接过程中,电锤冲击装置通过十字滑台进行移动,实现接触式旋转冲击作用. 冲击作用区域为距焊缝中心12 mm的热影响区(通过前期测试为明显软化区),利用量程为220 V单相调压器调节旋转冲击装置的输入电压,调节冲击力的大小,工作电压分别为70、80、90、100和110 V,根据随焊旋转冲击压力换算得[14],冲击压力分别为60.6、69.2、77.9、86.5和95.2 MPa,超过110 V时,对焊接过程产生较强的扰动,使得焊接过程不稳定,焊接质量下降.

    将随焊旋转冲击试样沿垂直焊缝方向切割取样,用不同颗粒度的SiC砂纸磨至2000目,采用金刚石抛光膏进行机械抛光,腐蚀剂为凯勒试剂(1%HF + 1.5%HCl + 2.5%HNO3 + 95%H2O),用Axiovert 40MAT倒置金相显微镜观察组织,用JSM-7500F扫描电镜进行面扫描分析.

    利用HV-50型维氏硬度计对试样进行硬度测试,试验采用的加载力为0.1 kg,保压时间为10 s,常规焊试样和随焊旋转冲击试样在离焊缝上表面0.5 mm的距离进行水平方向测量,每个测量点间距为0.5 mm.

    6061-T6铝合金母材显微组织金相,如图2所示,可以看出,6061-T6铝合金母材组织主要由α-Al基体和晶内、晶界处分布的形貌各异的析出相颗粒构成,合金内析出的相弥散地分布在α-Al基体中.

    图  2  6061-T6铝合金母材显微组织金相图
    Figure  2.  Metallographic diagram of the microstructure of 6061-T6 aluminum alloy base metal

    不同的冲击电压下热影响区金相组织形貌,如图3所示. 常规焊接条件下,由于“过时效”效应,导致焊接热影响区的析出相发生回溶和转变,与图2比较可以发现局部区域的析出相发生了明显的聚集长大. 在焊接过程中加入随焊旋转冲击形成局部的旋转挤压作用后,析出相特征发生了改变,相对于常规的焊接热循环条件,当冲击电压为70、80、90 V时,析出相的聚集无明显变化,当冲击电压为90 ~ 110 V时,细小弥散析出的析出相逐渐增加. 相关文献[15-16]表明压应力会促进6xxx系铝合金的时效析出过程,时效析出相尺寸得到细化.

    图  3  不同的旋转冲击电压下热影响区金相组织形貌
    Figure  3.  Metallographic structure morphology of the heat-affected zone under different rotational impulse voltages. (a) conventional welding; (b) 70 V; (c) 80 V; (d) 90 V; (e) 100 V; (f) 110 V

    为了明确影响组织性能的因素,针对6061-T6铝合金母材、TIG焊接试件和随焊旋转冲击作用效果明显的试件(工作电压为100 V)的热影响区进行面扫描,如图4所示. 6061-T6铝合金母材经过固溶和人工时效处理,合金内部析出大量时效强化相[17].未冲击热影响区含有大量粗大析出相掉落后的剥落区,冲击热影响区的剥落区则明显尺寸和数量减少. 相关文献[18-19]表明与基体保持共格关系或半共格关系的析出相为时效强化相,铝合金中时效强化相为β″相与β′相,而β相与α-Al基体保持非共格关系,更容易产生剥落. 另外观察到,与未冲击热影响区析出相特征不同的是,冲击热影响区内的析出相尺寸更小、数量更多.

    图  4  6061-T6铝合金母材、未冲击试件热影响区与100 V工作电压冲击试件的热影响区的SEM
    Figure  4.  SEM of the heat-affected zone of the 6061-T6 aluminum alloy base metal, the heat-affected zone of the unimpounded specimen and the 100 V working voltage impact specimen. (a) 6061-T6 aluminum alloy base material; (b) unshocked heat-affected zone; (c) 100 V shock heat affected zone

    不同工作电压的随焊旋转冲击热影响区件的硬度曲线图,如图5所示. 由图可知,随焊旋转冲击作用的试样两侧的软化程度最大的区域均位于焊接热影响区,但试样两侧的硬度分布有明显区别.工作电压为70 V时,接头未冲击一侧的硬度最低为52.5 HV0.1,冲击一侧的硬度最低为57 HV0.1,提升约9%;工作电压增至80 V时,接头未冲击一侧的硬度最低为56.8 HV0.1,冲击一侧的硬度最低为63 HV0.1,提升约11%;工作电压增至90 V时,接头未冲击一侧的硬度最低为57.3 HV0.1,冲击一侧的硬度最低为65.8 HV0.1,提升约15%;工作电压增至100 V时,接头未冲击一侧的硬度最低为56 HV0.1,冲击一侧的硬度最低为65.8 HV0.1,提升约18%;工作电压增至110 V时,接头未冲击一侧的硬度最低为54.7 HV0.1,冲击一侧的硬度最低为61.5 HV0.1,提升约12%. 冲击作用区域的硬度相比未作用区域均有不同程度的提高,其中,在工作电压为100 V时,硬度提升效果最为明显. 焊接热影响区的软化现象得到抑制,接头力学性能得到提高. 可当工作电压为110 V时,硬度值开始降低,表明变形量达到一定值时,合金力学性能开始下降[20].

    图  5  不同工作电压的随焊旋转冲击热影响区试样的硬度点线图
    Figure  5.  Hardness point-line plots of specimens in the heat-affected zone of rotational impact with welding at different working voltages

    100 V工作电压下的随焊旋转冲击接头热影响区与对应未冲击作用区的X射线衍射图,如图6所示. 由图可知,冲击作用下的焊接热影响区与未冲击作用下的焊接热影响区均出现了Mg2Si的特征峰.

    图  6  100 V工作电压下的随焊旋转冲击接头热影响区与未冲击热影响区的X射线衍射图
    Figure  6.  X-ray diffractograms of the heat-affected and unimpacted zones of a rotationally impacted joint with welding at 100 V operating voltage

    6061铝合金属于Al-Mg-Si合金,其主要时效析出序列为:过饱和固溶体→GP区→β″相→β′相→β[21]. 对合金中β″相、β′相、β相3种主要时效相进行模型构建,如图7所示, β″相晶体结构在计算中采用Zandbergen等人[22]提出的单斜结构模型,化学式为Mg5Si6,空间群为C2/m,晶格常数为a = 15.16 Å,b = 4.05 Å,c = 6.74 Å,β = 105.3°. 空间群为P63/m的β′相(Mg9Si5),采用Vissers等人[23]提出的具有六方晶格结构的模型计算,晶格常数为a = b = 7.15 Å,c = 12.15 Å.具有立方晶格结构的Mg2Si(β相),具有Fm3m空间群,晶格常数为a = b = c = 6.35 Å. 采用Material Studio软件中基于密度泛函理论(density functional theory,DFT)的CASTEP模块,对6061铝合金中的主要时效相在0 ~ 100 GPa压力范围内进行第一性原理计算. 电子交换关联势函数选取GGA-PBE泛函,离子核与价电子的相互作用的势函数选用超软赝势进行模拟,在几何优化过程中采用BFGS算法. 采用上述计算参数在0 GPa条件下进行几何优化,计算得到的平衡晶格常数见表2,可以看出计算结果与相关文献的理论值和试验值相吻合,这表明建立的模型与计算方法是可行的.

    图  7  析出相晶体结构
    Figure  7.  Crystal structure of the precipitated phase. (a) β-phase (Mg2Si) crystal structure; (b) β′ phase (Mg9Si5) crystal structure; (c) Crystal structure of the β" phase (Mg5Si6).
    表  2  时效析出相的晶格常数
    Table  2.  Lattice constants of aging precipitated phases
    空间群晶格常数来源
    β″相(Mg5Si6)C2/ma = 15.156 Å,b = 4.099 Å,
    c = 6.955 Å,β = 110.5°
    本工作
    a = 15.114 Å,b = 3.995 Å,
    c = 7.391 Å,β = 113.9°
    [24]
    a = 15.16 Å,b = 4.05 Å,
    c = 6.74 Å,β = 105°
    [22]
    β′相(Mg9Si5)P63/ma = b = 7.201 Å,c = 12.351 Å本工作
    a = b = 7.203 Å,c = 12.349 Å[24]
    a = b = 7.15 Å,c = 12.15 Å[23]
    β相(Mg2Si)Fm3ma = b = c = 6.384 Å本工作
    a = b = c = 6.386 Å[24]
    a = b = c = 6.34 Å[25]
    下载: 导出CSV 
    | 显示表格

    3种相中晶格常数(a、b、c)与晶胞体积随压强变化的函数关系,如图8所示. β″相、β′相、β相随压强增加而减小的同时具有相似的体积变化率,证明3种相抗压缩形变的能力相同,a/a0,b/b0,c/c0,v/v0表示不同压强作用下晶格常数和晶胞体积变化率. 图8(a)中,β″相a、b、c轴的变化率在0 ~ 80 GPa相似,在80 GPa以上的变化率以a轴>c轴>b轴的关系递减. 图8 (b)中,β′相在0 ~ 60 GPa晶格变化率相似,60 GPa以后相变导致a轴的变化率急剧上升,同时c轴的变化率急剧下降,直至70 Gpa后以原变化速率下降. 图8(c)中,晶格常数的变化率与压强呈反比例关系,表现出良好的抗压能力. 此外,相比于β″和β相的变化规律,β′相在60 ~ 70 GPa发生了晶格常数畸变,表明β′相对压力更加敏感.

    图  8  析出相在不同压力下晶格常数和晶胞体积的变化率
    Figure  8.  Rate of change of the lattice constant and unit cell volume of the precipitated phase at different pressures. (a) β" phase (Mg5Si6); (b) β′ phase (Mg9Si5); (c) β phase (Mg2Si)

    为了研究 Al-Mg-Si 合金时效过程中3种相的热力学稳定性,分别计算β″相、β′相、β相在0 ~ 100 GPa范围内的形成焓,如图9所示,焓如下[26]

    图  9  析出相在不同压力下的形成焓
    Figure  9.  Enthalpy of formation of the precipitated phase at different pressures
    $$ {{\Delta }}H = \frac{{{E_{{\text{Al - Mg - Si}}}} - ({N_{{\text{Al}}}}{E_{{\text{Al}}}} + {N_{{\text{M}}g}}{E_{{\text{Mg}}}} + {N_{{\text{Si}}}}{E_{{\text{Si}}}})}}{{{N_{{\text{Al}}}} + {N_{{\text{Mg}}}} + {N_{{\text{Si}}}}}} $$ (1)

    式中:EAl-Mg-Si是析出相的总能量;EAlEMgESi分别是Al、Mg、Si原子的能量;NAlNMgNSi分别为原胞中Al、Mg、Si原子的个数. 由图9可知,3种相在0 GPa压力下形成焓的排序是β″相>β′相>β相,符合Al-Mg-Si合金的时效析出顺序. 此外,β″相的形成焓随着压力增加而快速减小,证明β″相热力学稳定性随着压力增加而增加. β′相的形成焓在0 ~ 60 GPa与70 ~ 100 GPa均随着压力增加而快速减小,但在60 ~ 70 GPa发生明显增高,表明在该压力范围内β′相的热力学稳定性发生较大波动,这与其晶格结构畸变有关.通过以上计算分析可得,6061铝合金在焊接过程中随焊旋转冲击的力学作用下,促进了半共格相β′的析出. 相比β″相和β′相的形成焓,β相形成焓随压力增加的变化较小,β″相和β′相的形成焓下降趋势明显大于β相形成焓的下降趋势,说明随着压力的增大,析出相的能量条件发生变化[27],Al-Mg-Si合金的时效析出序列也随之发生改变.

    (1) 6061-T6铝合金由于焊接热输入的影响,焊接接头易发生晶粒粗大和时效强化相的回溶. 在随焊旋转冲击的作用下,使得热影响区内的晶粒细小,促进了时效相再析出,接头热影响区软化程度得到抑制.

    (2)随焊旋转冲击的热影响区硬度均高于常规焊接的软化区. 冲击软化区硬度随工作电压增大而增强,由冲击电压70 V的57 HV0.1增至冲击电压100 V的65.8 HV0.1,冲击强化效果较显著.

    (3)第一性原理计算结果表明,在0 ~ 100 GPa,β″相和β相在压力下的稳定性较好,β′相对压力更加敏感,在60 ~ 70 GPa发生了晶格畸变. 随着压力的增大,Al-Mg-Si合金的时效析出序列会发生改变.

  • 图  1   随焊旋转冲击设备示意图

    1. 电锤冲击装置 2. 十字滑台 3. 支架 4. 工作滑台 5. 底座 6. 焊枪

    Figure  1.   Schematic diagram of rotating impact equipment with welding

    图  2   6061-T6铝合金母材显微组织金相图

    Figure  2.   Metallographic diagram of the microstructure of 6061-T6 aluminum alloy base metal

    图  3   不同的旋转冲击电压下热影响区金相组织形貌

    Figure  3.   Metallographic structure morphology of the heat-affected zone under different rotational impulse voltages. (a) conventional welding; (b) 70 V; (c) 80 V; (d) 90 V; (e) 100 V; (f) 110 V

    图  4   6061-T6铝合金母材、未冲击试件热影响区与100 V工作电压冲击试件的热影响区的SEM

    Figure  4.   SEM of the heat-affected zone of the 6061-T6 aluminum alloy base metal, the heat-affected zone of the unimpounded specimen and the 100 V working voltage impact specimen. (a) 6061-T6 aluminum alloy base material; (b) unshocked heat-affected zone; (c) 100 V shock heat affected zone

    图  5   不同工作电压的随焊旋转冲击热影响区试样的硬度点线图

    Figure  5.   Hardness point-line plots of specimens in the heat-affected zone of rotational impact with welding at different working voltages

    图  6   100 V工作电压下的随焊旋转冲击接头热影响区与未冲击热影响区的X射线衍射图

    Figure  6.   X-ray diffractograms of the heat-affected and unimpacted zones of a rotationally impacted joint with welding at 100 V operating voltage

    图  7   析出相晶体结构

    Figure  7.   Crystal structure of the precipitated phase. (a) β-phase (Mg2Si) crystal structure; (b) β′ phase (Mg9Si5) crystal structure; (c) Crystal structure of the β" phase (Mg5Si6).

    图  8   析出相在不同压力下晶格常数和晶胞体积的变化率

    Figure  8.   Rate of change of the lattice constant and unit cell volume of the precipitated phase at different pressures. (a) β" phase (Mg5Si6); (b) β′ phase (Mg9Si5); (c) β phase (Mg2Si)

    图  9   析出相在不同压力下的形成焓

    Figure  9.   Enthalpy of formation of the precipitated phase at different pressures

    表  1   6061铝合金化学成分(质量分数,%)

    Table  1   Chemical compositions of 6061 aluminum alloy

    MgSiCuFeMnCrZnAl
    1.070.640.250.390.080.150.15余量
    下载: 导出CSV

    表  2   时效析出相的晶格常数

    Table  2   Lattice constants of aging precipitated phases

    空间群晶格常数来源
    β″相(Mg5Si6)C2/ma = 15.156 Å,b = 4.099 Å,
    c = 6.955 Å,β = 110.5°
    本工作
    a = 15.114 Å,b = 3.995 Å,
    c = 7.391 Å,β = 113.9°
    [24]
    a = 15.16 Å,b = 4.05 Å,
    c = 6.74 Å,β = 105°
    [22]
    β′相(Mg9Si5)P63/ma = b = 7.201 Å,c = 12.351 Å本工作
    a = b = 7.203 Å,c = 12.349 Å[24]
    a = b = 7.15 Å,c = 12.15 Å[23]
    β相(Mg2Si)Fm3ma = b = c = 6.384 Å本工作
    a = b = c = 6.386 Å[24]
    a = b = c = 6.34 Å[25]
    下载: 导出CSV
  • [1]

    Kapil A, Lee T, Vivek A, et al. Spot impact welding of an agehardening aluminum alloy: process, structure and properties[J]. Journal of Manufacturing Processes, 2019, 37: 42 − 52. doi: 10.1016/j.jmapro.2018.11.006

    [2]

    Gopkalo O, Liu X, Long F, et al. Nonisothermal thermal cycleprocess model for predicting post-weld hardness in friction stir welding of dissimilar age-hardenable aluminum alloys[J]. Materials Science and Engineering: A, 2019, 754: 205 − 215. doi: 10.1016/j.msea.2019.03.025

    [3]

    Wang Z, Chen M, Jiang H, et al. Effect of artificial ageing on strength and ductility of an Al-Cu-Mg-Mn alloy subjected to solutionizing and room-temperature rolling[J]. Materials Chara-cterization, 2020, 165: 110383. doi: 10.1016/j.matchar.2020.110383

    [4] 吕晓春, 雷振, 张健, 等. 高速列车6005A-T6铝合金焊接接头软化分析[J]. 焊接学报, 2014, 35(8): 25 − 29.

    Lü Xiaochun, Lei Zhen, Zhang Jian, et al. Analysis of softening of 6005A-T6 aluminum alloy welded joints of high-speed train[J]. Transactions of the China Welding Institution, 2014, 35(8): 25 − 29.

    [5] 毛镇东, 郑自芹, 李帅贞, 等. 高速列车用6A01-T5铝合金MIG焊接接头软化行为研究[J]. 热加工艺, 2021, 50(1): 35 − 39.

    Mao Zhendong, Zheng Ziqin, Li Shuaizhen, et al. Study on sof-tening behavior of 6A01-T5 aluminum alloy MIG welded joints for high-speed trains[J]. Hot Additive Technology, 2021, 50(1): 35 − 39.

    [6]

    Wahid M A, Siddiquee A N, Khan Z A, et al. Analysis of cooling media effects on microstructure and mechanical properties during FSW/UFSW of AA 6082-T6[J]. Materials Research Express, 2018, 5(4): 046512. doi: 10.1088/2053-1591/aab8e3

    [7]

    Hu Y, Liu H, Du S. Achievement of high-strength 2219 aluminum alloy joint in a broad process window by ultrasonic enhanced friction stir welding[J]. Materials Science and Engineering: A, 2021, 804: 140587. doi: 10.1016/j.msea.2020.140587

    [8]

    Liang Y, Shen J, Hu S, et al. Effect of TIG current on micro structural and mechanical properties of 6061-T6 aluminium alloy joints by TIG-CMT hybrid welding[J]. Journal of Materials Processing Technology, 2018, 255: 161 − 174. doi: 10.1016/j.jmatprotec.2017.12.006

    [9] 范成磊, 方洪渊, 田应涛, 等. 随焊冲击碾压对LY12CZ铝合金接头组织和性能的影响[J]. 材料工程, 2004(10): 24 − 28. doi: 10.3969/j.issn.1001-4381.2004.10.006

    Fan Chenglei, Fang Hongyuan, Tian Yingtao, et al. Influence of impact crushing with welding on the organization and properties of LY12CZ aluminum alloy joints[J]. Materials Engineering, 2004(10): 24 − 28. doi: 10.3969/j.issn.1001-4381.2004.10.006

    [10]

    Fu S, Yi D Q, Liu H Q, et al. Effects of external stress aging on morphology and precipitation behavior of θ″phase in Al- Cu alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7): 2282 − 2288. doi: 10.1016/S1003-6326(14)63345-8

    [11]

    Ma Y, Oganov A R, Xie Y. High-pressure structures of lithium, potassium, and rubidium predicted by an abinitio evolutionary algorithm[J]. Physical Review B, 2008, 78(1): 014102. doi: 10.1103/PhysRevB.78.014102

    [12]

    Xiao H Y, Jiang X D, Duan G, et al. First principles calcul ations of pressure induced phase transformation in AlN and GaN[J]. Computational Materials Science, 2010, 48(4): 768 − 772. doi: 10.1016/j.commatsci.2010.03.028

    [13] 张勇, 唐家成, 葛泽龙, 等. 随焊旋转冲击抑制30CrMnSi接头热影响区软化[J]. 焊接学报, 2021, 42(5): 84 − 89. doi: 10.12073/j.hjxb.20200309001

    Zhang Yong, Tang Jiacheng, Ge Zelong et al. Suppression of softening in the heat-affected zone of 30CrMnSi joints by rotateonnal impact with welding[J]. Transactions of the China Welding Institution, 2021, 42(5): 84 − 89. doi: 10.12073/j.hjxb.20200309001

    [14] 张勇, 杨建国, 方洪渊, 等. TC4薄板焊接件随焊冲击旋转挤压力计算[J]. 焊接学报, 2012, 33(9): 89 − 92.

    Zhang Yong, Yang Jianguo, Fang Hongyuan, et al. Calculation of rotational squeezing force of TC4 thin plate weldments with welding impact[J]. Transactions of the China Welding Institution, 2012, 33(9): 89 − 92.

    [15] 顾媛, 陈江华, 刘春辉, 等. 预变形对Al-Mg-Si-Cu合金时效硬化和显微结构的影响[J]. 金属学报, 2015, 51(11): 1400 − 1406.

    Gu Yuan, Chen Jianghua, Liu Chunhui, et al. Effect of pre-deformation on age hardening and microstructure of Al-Mg-Si-Cu alloy[J]. Acta Metallurgica Sinica, 2015, 51(11): 1400 − 1406.

    [16]

    Teichmann K, Marioara C D, Pedersen K O, et al. The effect of simultaneous deformation and annealing on the precipitation behaviour and mechanical properties of an Al-Mg-Si alloy[J]. Materials Science and Engineering: A, 2013, 565: 228 − 235. doi: 10.1016/j.msea.2012.12.042

    [17]

    Izcara X L, Blank A G, Pyczak F, et al. Characterization and modeling of the influence of artificial aging on the microstruct ural evolution of age-hardenable Al-Si-Mg-(Cu) aluminum all-oys[J]. Materials Science and Engineering: A, 2014, 610: 46 − 53. doi: 10.1016/j.msea.2014.04.031

    [18] 朱琳. 铝合金准二维多晶试样中时效析出相对力学性能和变形机制的影响[D]. 重庆: 重庆大学, 2017.

    Zhu Lin. Effect of aging precipitation on relative mechanical properties and deformation mechanism in quasi-two-dimensional polycrystalline specimens of aluminum alloys [D]. Chongqing: Chongqing University, 2017.

    [19] 张磊, 董选普, 李继强, 等. Mg-15Gd-3Y挤压合金的时效强化[J]. 中国有色金属学报, 2010, 20(4): 599 − 605.

    Zhang Lei, Dong Xuanpu, Li Jiqiang, et al. Age strengthening of Mg-15Gd-3Y extrusion alloy[J]. China Journal of Nonferrous Metals, 2010, 20(4): 599 − 605.

    [20] 张丽凤. 汽车用6061铝合金热压缩变形行为研究[J]. 塑性工程学报, 2020, 27(11): 174 − 181. doi: 10.3969/j.issn.1007-2012.2020.11.026

    Zhang Lifeng. Study on thermal compression deformation beh-avior of 6061 aluminum alloy for automotive use[J]. Journal of Plasticity Engineering, 2020, 27(11): 174 − 181 doi: 10.3969/j.issn.1007-2012.2020.11.026

    [21] 陈江华, 刘春辉. Al-Mg-Si(Cu)合金中纳米析出相的结构演变[J]. 中国有色金属学报, 2011, 21(10): 2352 − 2360.

    Chen Jianghua, Liu Chunhui. Structural evolution of nanopreci-pitated phase in Al-Mg-Si(Cu) alloy[J]. Chinese Journal of No-nferrous Metals, 2011, 21(10): 2352 − 2360.

    [22]

    Zandbergen H W, Andersen S J, Jansen J. Structure determinat-ion of Mg5Si6 particles in Al by dynamic electron diffraction st-udies[J]. Science, 1997, 277(5330): 1221 − 1225. doi: 10.1126/science.277.5330.1221

    [23]

    Vissers R, van Huis M A, Jansen J, et al. The crystal structure of the β′phase in Al-Mg-Si alloys[J]. Acta Materialia, 2007, 55(11): 3815 − 3823. doi: 10.1016/j.actamat.2007.02.032

    [24]

    Zhang B, Wu L, Wan B, et al. Structural evolution, mechanical properties, and electronic structure of Al-Mg-Si compounds from first principles[J]. Journal of Materials Science, 2015, 50(19): 6498 − 6509. doi: 10.1007/s10853-015-9209-4

    [25]

    Villars P, Calvert L D. Pearson's handbook of crystallographic data for intermetallic phases[J]. Crystal Research and Technol-ogy, 1987, 22(11).

    [26]

    Wu M M, Wen L, Tang B Y, et al. First-principles study of elastic and electronic properties of MgZn2 and ScZn2 phases in Mg-Sc-Zn alloy[J]. Journal of Alloys and Compounds, 2010, 506(1): : 412 − 417. doi: 10.1016/j.jallcom.2010.07.018

    [27]

    Wang S Q, Schneider M, Ye H Q, et al. First-principles study of the formation of Guinier-Preston zones in Al-Cu alloys[J]. Scripta Materialia, 2004, 51(7): 665 − 669. doi: 10.1016/j.scriptamat.2004.06.018

图(9)  /  表(2)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  8
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-20
  • 网络出版日期:  2025-02-16
  • 刊出日期:  2025-03-24

目录

/

返回文章
返回