高级检索

2A12铝合金Ar-He混合保护气VPPA焊接接头组织与力学性能

范佳兴, 韩永全, 张利国, 孙振邦

范佳兴, 韩永全, 张利国, 孙振邦. 2A12铝合金Ar-He混合保护气VPPA焊接接头组织与力学性能[J]. 焊接学报, 2025, 46(1): 112-120. DOI: 10.12073/j.hjxb.20231019001
引用本文: 范佳兴, 韩永全, 张利国, 孙振邦. 2A12铝合金Ar-He混合保护气VPPA焊接接头组织与力学性能[J]. 焊接学报, 2025, 46(1): 112-120. DOI: 10.12073/j.hjxb.20231019001
FAN Jiaxing, HAN Yongquan, ZHANG Liguo, SUN Zhenbang. Microstructure and mechanical properties of 2A12 aluminum alloy VPPA welded joint with Ar-He mixed shielding gas[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 112-120. DOI: 10.12073/j.hjxb.20231019001
Citation: FAN Jiaxing, HAN Yongquan, ZHANG Liguo, SUN Zhenbang. Microstructure and mechanical properties of 2A12 aluminum alloy VPPA welded joint with Ar-He mixed shielding gas[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 112-120. DOI: 10.12073/j.hjxb.20231019001

2A12铝合金Ar-He混合保护气VPPA焊接接头组织与力学性能

基金项目: 国家自然科学基金资助项目(52265054);内蒙古自治区自然科学基金资助项目(2022ZD03);内蒙古自治区科技计划项目(2020GG0313);内蒙古自治区自然科学基金博士基金资助项目( 2021BS05016);新型有色金属材料开发与加工成形关键技术集成攻关大平台建设项目
详细信息
    作者简介:

    范佳兴,硕士;主要从事先进焊接技术及工艺的研究;Email:15648634300@163.com

    通讯作者:

    韩永全,博士,教授,博士研究生导师;Email:nmhyq@sina.com.

  • 中图分类号: TG 407

Microstructure and mechanical properties of 2A12 aluminum alloy VPPA welded joint with Ar-He mixed shielding gas

  • 摘要:

    研究二元混合保护气变极性等离子弧(variable polarity plasma arc,VPPA)焊接技术,获得厚度为12 mm 2A12铝合金接头. 焊后通过金相显微镜、扫描电子显微镜(scanning electron microscope,SEM)、能谱仪(energy dispersive spectrometer, EDS)、万能液压试验机等,分析焊接接头的焊缝成形、微观组织、界面元素分布和力学性能. 相比氩弧, 氩氦混合电弧有效截面积更小,使其具有更高的能量和更为集中的阳极功率密度. 焊接接头各区域的焊接热循环有所不同,而热量影响组织特征,进而影响力学性能. 结果表明,相比一元保护气焊接接头,焊缝区微观组织多出现麦穗状树枝晶,更加细小且致密,母材到焊缝中心区EDS分析显示,热影响区的Mg元素增多,焊缝中心区的Cu元素增多;接头平均抗拉强度为317 MPa,达到母材强度的75.8%,屈服强度相比母材降低65 MPa;断口呈现典型的韧窝断裂;同时接头显微硬度呈现“W”形分布,最低值为95.5 HV. 混合保护气VPPA焊接技术具有良好的应用前景.

    Abstract:

    The variable polarity plasma arc(VPPA) welding technology of binary mixed shielding gas was studied, and the joint of 2A12 aluminum alloy with 12 mm thickness was obtained. After welding, the weld formation, microstructure, interface element distribution and mechanical properties of the welded joint were analyzed by metallographic microscope, scanning electron microscope(SEM), energy dispersive spectrometer(EDS) and universal hydraulic testing machine. Compared with argon arc, the effective cross-sectional area of argon-helium mixed gas arc was smaller, which made it have higher energy and more concentrated anode power density. The welding thermal cycle of each region of the welded joint was different, and the heat affected the microstructure characteristics, which in turn affected the mechanical properties. The results showed that compared with the one-dimensional shielding gas welded joint, the microstructure of the weld zone appeared more wheat-like dendrites, which were finer and denser. The EDS analysis from the base metal to the seam center showed that the Mg element in the heat-affected zone increased, and the Cu element in the weld center increased. The average tensile strength of the joint was 317 MPa, which was 75.8 % of that of the base metal, and the yield strength was 65 MPa lower than that of the base metal. The fracture showed typical dimple fracture; at the same time, the microhardness of the joint presented a “W” shape distribution, and the minimum value was 95.5 HV. Hybrid shielding gas VPPA welding technology had a good application prospect.

  • 图  1   焊接试验系统

    Figure  1.   Welding test system

    图  2   焊接电弧形态

    Figure  2.   Welding arc shapes. (a) 100%Ar; (b) 80%Ar + 20%He

    图  3   焊缝外观形貌

    Figure  3.   Weld appearance. (a) 100%Ar; (b) 80%Ar + 20%He

    图  4   焊接接头宏观形貌

    Figure  4.   Macroscopic morphology of welded joint

    图  5   不同倍数下接头的微观组织

    Figure  5.   Microstructure of welded joints under different multiples. (a) 100%Ar; (b) high multiple magnification of Fig. 5(a); (c) 80%Ar + 20%He; (d) high multiple magnification of Fig. 5(c)

    图  6   一元保护气焊接接头线扫描结果

    Figure  6.   One-dimensional shielding gas welding joint line scanning results. (a) line scanning area; (b) EDS line scan results; (c) Al element; (d) Mg element; (e) Cu element

    图  7   二元保护气焊接接头线扫描结果

    Figure  7.   Two-dimensional shielding gas welding joint line scanning results. (a) line scanning area; (b) EDS line scan results; (c) Al element; (d) Mg element; (e) Cu element

    图  8   焊接接头SEM及EDS

    Figure  8.   SEM and EDS of welded joints. (a) scanned area; (b) S phase; (c) θ phase; (d) Al element; (e) Cu element; (f) Mg element; (g) Fe element; (h) Mn element

    图  9   XRD图谱

    Figure  9.   XRD patterns

    图  10   拉伸断口形貌

    Figure  10.   Morphology of tensile fracture. (a) 100%Ar; (b) high multiple magnification of Fig. 10(a); (c) high multiple magnification of Fig. 10(b); (d) 80%Ar + 20%He; (e) high multiple magnification of Fig. 10(d); (f) high multiple magnification of Fig. 10(e)

    图  11   显微硬度

    Figure  11.   Microhardness

    表  1   母材及焊丝的化学成分(质量分数,%)

    Table  1   Chemical composition of base metal and welding wire

    材料 Si Fe Cu Mn Mg Ni Zn Ti Al
    2A12-T4 0.15 0.25 4.58 0.68 1.63 <0.10 <0.20 <0.10 余量
    ER5356 0.25 0.40 0.01 0.20 4.50 ~ 5.50 0.10 0.06 ~ 0.20 余量
    下载: 导出CSV

    表  2   焊接接头的拉伸性能

    Table  2   Tensile properties of welded joints

    试样 屈服强度
    Rel/MPa
    抗拉强度
    Rm/MPa
    断后伸长率
    A(%)
    断裂部位
    母材 303 418 19.2
    100%Ar 260 308 6.0 焊缝
    80%Ar + 20%He 238 317 5.7 焊缝
    下载: 导出CSV
  • [1] 李雯哲, 钱锋, 程兴旺. 增材制造中高强铝合金的缺陷与力学性能研究进展[J]. 材料工程, 2023, 51(3): 29 − 38 .

    Li Wenzhe, Qian Feng, Cheng Xingwang. Research progress in defects and mechanical properties of additively manufactured aluminum alloy[J]. Journal of Materials Engineering, 2023, 51(3): 29 − 38 .

    [2] 郎瑞卿, 韩永全, 白雪宇, 等. 变极性频率对铝合金变极性等离子弧穿孔立焊熔池稳定性的影响机理[J]. 稀有金属材料与工程, 2022, 51(4): 1172 − 1182.

    Lang Ruiqing, Han Yongquan, Bai Xueyu, et al. Impacting mechanism of variable polarity frequency on weld pool stability in variable polarity plasma arc keyhole vertical welding of aluminum alloy[J]. Rare Metal Materials and Engineering, 2022, 51(4): 1172 − 1182.

    [3] 蒋凡, 赵世宗, 徐斌, 等. 厚板铝合金变极性等离子弧焊电弧物理特性[J]. 焊接, 2023(7): 1 − 8.

    Jiang Fan, Zhao Shizong, Xu Bin, et al. Physical characteristics of VPPAW arc for thick plate aluminum alloys[J]. Welding & Joining, 2023(7): 1 − 8.

    [4]

    Xu B, Chen S J, Tashiro S, et al. Physical mechanism of material flow in variable polarity plasma arc keyhole welding revealed by in situ x-ray imaging[J]. Physics of Fluids, 2021, 33(1): 017121. doi: 10.1063/5.0036587

    [5]

    Sahoo A, Tripathy S. Development in plasma arc welding process: a review[J]. Materials Today, 2021, 41: 363 − 368.

    [6]

    Xu B, Tashiro S, Tanaka M, et al. Physical mechanisms of fluid flow and joint inhomogeneity in variable-polarity plasma arc welding of thick aluminum alloy plates[J]. Physics of Fluids, 2021, 33(8): 087103. doi: 10.1063/5.0058843

    [7]

    Liu J B, Jiang F, Chen S J, et al. Analysis of molten metal fluid flow mechanisms in variable polarity plasma arc welding of aluminum alloys[J]. Physics of Fluids, 2023, 35(9): 092107. doi: 10.1063/5.0165380

    [8]

    Lang R Q, Han Y Q, Bao X L, et al. Stability mechanism of the molten pool in variable polarity plasma arc welding of medium thickness aluminum alloy[J]. Journal of Materials Processing Technology, 2023, 321: 118127. doi: 10.1016/j.jmatprotec.2023.118127

    [9]

    Cheng W, Ma X Q, Zhang J L, et al. Stability of weld pool and elimination of weld defects in aluminum alloy plasma arc keyhole welding at continuously varying positions[J]. Materials, 2021, 14(19): 5898. doi: 10.3390/ma14195898

    [10]

    Chen H X, Zhang T L, Zhu Z M, et al. Study on the effect of Ar–He shielding gas on the weld formation, microstructure and mechanical properties of 5083 aluminum alloy weld[J]. Journal of Materials Research and Technology, 2024, 28: 683 − 694. doi: 10.1016/j.jmrt.2023.11.271

    [11]

    Li H, Zou J S, Yao J S, et al. The effect of TIG welding techniques on microstructure, properties and porosity of the welded joint of 2219 aluminum alloy[J]. Journal of Alloys and Compounds, 2017, 727: 531 − 539. doi: 10.1016/j.jallcom.2017.08.157

    [12]

    Cai C, He S, Chen H, et al. The influences of Ar-He shielding gas mixture on welding characteristics of fiber laser-MIG hybrid welding of aluminum alloy[J]. Optics & Laser Technology, 2019, 113: 37 − 45.

    [13]

    Li S, Zhang L J, Ning J, et al. Comparative study on the microstructures and properties of wire + arc additively manufactured 5356 aluminium alloy with argon and nitrogen as the shielding gas[J]. Additive Manufacturing, 2020, 34: 101206. doi: 10.1016/j.addma.2020.101206

    [14] 陈思君, 陈送义, 陈庚, 等. Mg含量对2A14铝合金组织和力学性能的影响[J]. 金属热处理, 2022, 47(4): 86 − 92.

    Chen Sijun, Chen Songyi, Chen Geng, et al. Effect of Mg content on microstructure and mechanical properties of 2A14 aluminum alloy[J]. Heat Treatment of Metals, 2022, 47(4): 86 − 92.

    [15] 周阳, 齐铂金. VPPAW工艺的变极性焊接电流受控稳定性[J]. 焊接学报, 2022, 43(4): 16 − 25.

    Zhou Yang, Qi Bojin. Controlled stability of variable polarity welding current in VPPAW process[J]. Transactions of the China Welding Institution, 2022, 43(4): 16 − 25.

    [16]

    Lang R Q, Han Y Q, Bai X Y, et al. Influence of the metal flow in the keyhole molten pool on the molten pool stability in continuous variable polarity plasma arc keyhole vertical-up welding[J]. Journal of Manufacturing Processes, 2022, 76: 195 − 209. doi: 10.1016/j.jmapro.2021.12.052

    [17]

    Liu J B, Jiang F, Xu B, et al. Physical mechanism of material flow and temperature distribution in keyhole plasma arc welding at initial unstable stage[J]. Physics of Fluids, 2023, 35(3): 033115. doi: 10.1063/5.0141776

    [18]

    Traidia A, Roger. A F. A computational investigation of different helium supplying methods for the improvement of GTA welding[J]. Journal of Materials Processing Technology, 2011, 211(9): 1553 − 1562. doi: 10.1016/j.jmatprotec.2011.04.008

    [19] 廖飞, 范世通, 邓运来, 等. 高强铝合金中间相Al2Cu, Al2CuMg和MgZn2性能的第一性原理计算[J]. 航空材料学报, 2016, 36(6): 1 − 8.

    Liao Fei, Fan Shitong, Deng Yunlai, et al. First-principle calculations of mechanical properties of Al2Cu, Al2CuMg and MgZn2 intermetallics in high strength aluminum alloys[J]. Journal of Aeronautical Materials, 2016, 36(6): 1 − 8.

  • 期刊类型引用(1)

    1. 高超,黄春跃,梁颖,付玉祥,匡兵. 微尺度CSP焊点弯振耦合应力应变分析与优化. 振动与冲击. 2021(09): 55-62+91 . 百度学术

    其他类型引用(3)

图(11)  /  表(2)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  13
  • PDF下载量:  25
  • 被引次数: 4
出版历程
  • 收稿日期:  2023-10-18
  • 网络出版日期:  2024-12-26
  • 刊出日期:  2025-01-24

目录

    /

    返回文章
    返回