The influence of hydrogen pre-charging on the stress corrosion susceptibility of SCR welded joints
-
摘要:
文中通过对X65制钢悬链线立管(steel catenary riser,SCR)焊接接头进行微观组织分析、慢应变速率拉伸试验(slow strain rate test,SSRT)及断口分析,探究预充氢对SCR应力腐蚀开裂(stress corrosion cracking, SCC)敏感性的影响. 结果表明,焊接接头热影响区中,细晶热影响区(fine-grained heat-affected zone,FGHAZ)主要由细小且均匀的铁素体(ferrite, F)和珠光体(pearlite, P)组成,使该区域力学性能显著优于其他热影响区域,而粗晶热影响区(coarse-grained heat-affected zone,CGHAZ)主要包括大块的先共析铁素体(proeutectoid ferrite,PF)、M-A组元等组织,使得该处抗SCC性能较差. SSRT试样在不同预充氢时间的条件下,应力−应变曲线的弹性阶段几乎重合,但预充氢使得试样抗拉强度降低. 此外,NaCl溶液腐蚀环境试样未充氢及充氢4天的应力腐蚀敏感性系数EZ分别为0.67%和11.14%;H2S腐蚀环境试样未充氢及预充氢4天的应力腐蚀敏感性系数EZ值分别为11.96%和46.38%,证明两种腐蚀环境下预充氢均会降低焊接接头的抗SCC能力. 试样在空气环境中发生韧性断裂,在两种腐蚀环境主要发生准解理断裂,预充氢使材料韧性降低,断口附近的微裂纹和孔洞现象加剧,降低了材料的抗SCC性能.
Abstract:This study shows the influence of hydrogen pre-charging on the stress corrosion cracking (SCC) susceptibility of steel catenary riser (SCR) welded joints made of X65 through microstructural analysis, slow strain rate tensile test (SSRT) , and fracture surface analysis. The results reveal that the fine-grained heat-affected zone (FGHAZ) of the welded joints primarily comprises fine and uniform ferrite (F) and pearlite (P), significantly enhancing the mechanical property of this zone compared to other heat-affected zone . In contrast, the coarse-grained heat-affected zone (CGHAZ) is characterized by large block of proeutectoid ferrite (PF) and M-A constituent, resulting in poor SCC resistance in this area. Although the elastic stage of the stress-strain curve of SSRT sample under various hydrogen pre-charging time nearly coincide, hydrogen pre-charging decreases the tensile strength of the samples. Additionally, in a NaCl solution corrosion environment, the stress corrosion susceptibility coefficient EZ of the samples hydrogen uncharged and after four days of hydrogen pre-charging are 0.67% and 11.14%, respectively; in an H₂S corrosion environment, the stress corrosion susceptibility coefficient EZ values for the samples hydrogen uncharged and after four days of hydrogen pre-charging are 11.96% and 46.38%, respectively. This demonstrates that hydrogen pre-charging reduces the SCC resistance of welded joints in both corrosion environment. The samples undergo ductile fracture in the air environment, while quasi-cleavage fracture predominates in both corrosion environment. Hydrogen pre-charging reduces the material toughness and exacerbates microcracks and hole near the fracture surface, thereby reducing the material's resistance to SCC.
-
Keywords:
- steel catenary riser /
- X65 steel /
- steel catenary riser /
- hydrogen pre-charging
-
0. 序言
随着各国对能源尤其是对传统的石油和天然气资源的需求量的不断提高,深水油气获得了极大的开采空间,海洋资源的综合利用效率也将不断提高,将为油气资源开发以及海洋经济的发展发挥更加重要的作用[1]. 海洋立管系统是深海资源开发的关键部分,其中SCR具有较小的管径和较大的壁厚,具有成本低、适用于高温高压环境的优点,在国内外具有广阔的应用前景[2-3]. 然而,SCR在长期服役过程中会持续受到油气资源中H2S的侵蚀,造成不同程度的氢脆. 不同服役时间的立管受到H2S的作用时间不同,在管道内壁存在的H2S和与外壁接触的海洋环境腐蚀以及应力作用下,容易在管道尤其是焊接接头处发生SCC.
目前国内外有关海洋环境SCC的研究较多. Han等人[4]研究了预应变对X65管线钢大变形CGHAZ对硫化物SCC敏感性的影响. 结果表明,预应变后试样的微观组织变化不大,但预应变使得抗硫化物SCC性能和断裂韧性具有协同提高作用. Yang等人[5]研究了充氢对模拟深海水环境中X70钢电化学和SCC行为的影响. 结果表明,随着充氢电流密度的增加,X70钢的SCC敏感性先降低后升高. Wang等人[6]研究了Incoloy825/X65双金属复合管焊接接头在湿H2S环境中的SCC行为. 结果表明,在湿H2S环境中,复合管焊接接头中出现了两类裂纹,产生机理均为阳极溶解、应力和氢的共同作用.
有关SCR的研究主要集中在SCR的安装、焊接工艺和疲劳机制等方面,SCC方面的研究未见系统深入的报道[7-9]. 因此,为完善SCR焊接接头处应力腐蚀敏感性和开裂机理,提高海洋油气资源的深海勘探效率和安全性,对SCR应力腐蚀相关机理的研究十分必要. 文中选取酸性服役环境下常用的X65管线钢,采取冷金属过渡弧焊(cold metal transfer,CMT)打底,熔化极气体保护焊(gas metal arc welding,GMAW)填充的SCR焊接工艺,探究不同预充氢时间对X65制SCR焊接接头在NaCl腐蚀液以及H2S环境中应力腐蚀敏感性变化的影响.
1. 试验方法
试验所用焊丝为ER70S-6,直径为1.00 mm,试验的母材为酸性服役环境下常用的X65管线钢,主要化学成分如表1和表2所示. 根据SCR焊接需要,焊缝为环焊缝,焊接位置选择管道水平固定焊. 采用CMT进行打底焊,保护气体为50% CO2 + 50% Ar,采用GMAW进行热焊和填充焊,其中填充焊采用7层,采用保护气体为20% CO2 + 80% Ar. 具体焊接参数如表3所示. 焊前设置单U形坡口,形状尺寸如图1所示.
表 1 ER70S-6焊丝化学成分(质量分数,%)Table 1. ER70S-6 welding wire chemical compositionsC Mn Si P S Fe 0.10 1.70 1.10 0.015 0.008 余量 表 2 X65钢的主要化学成分(质量分数,%)Table 2. Main chemical compositions of X65 steelC Si Mn Nb Ti S Ni P Cu Fe 0.098 0.196 1.193 0.022 0.003 0.003 0.027 0.013 0.067 余量 表 3 焊接工艺参数Table 3. Welding process parameters焊接方法 焊接电流
I/A电弧电压
U/V焊接速度
v/(mm·min−1)保护气流量
Q/(L·min−1)焊丝伸出长度
L/mmCMT 142 ~ 144 13.2 ~ 13.7 360 ~ 470 30 8 ~ 10 GMAW 188 ~ 206 21.6 ~ 22.0 360 ~ 470 30 8 ~ 10 试验所用工件取自于采用上述工艺所得的环焊缝,取样示意图及试样的形状与尺寸如图2所示. 对切割好的试样进行金相观察,并通过微观组织来分析各区域的性能. 为了模拟SCR在服役过程中管内的腐蚀环境,在参考美国标准NACE TM0284-2016《管道、压力容器抗氢致开裂钢性能评价的试验方法》基础上,采用Na2S2O3代替H2S气体以提高试验安全性,其可靠性已得到文献[4, 10]证明,因此H2S选择使用5%NaCl + 0.5%CH3COOH + 0.001 mol/L Na2S2O3的混合溶液,腐蚀液浓度相当于0.000 704%. 此外,3.5%NaCl溶液能较好地模拟真实海水盐浓度[11-12]. 选择3.5%NaCl溶液作为模拟海洋环境的腐蚀液.
采用浸泡法对试样进行预充氢处理,选择的充氢溶液为5% NaCl + 0.5% CH3COOH + 0.001 mol/L Na2S2O3的混合溶液,分别对试样预充氢1,2,3天和4天. 文献[13]研究表明,在NACE溶液中浸泡时,抗硫类钢将和溶液产生的H2S反应产生FeS膜以及吸附试样周围的氢原子. 其中部分氢原子渗入试样并固溶在试样中,从而达到预充氢的目的. 对未充氢以及预充氢时间为1,2,3天和4天的试样,分别在空气和两种腐蚀环境中进行SSRT,根据试验数据来探究预充氢对试样应力腐蚀敏感性的影响. 通过ZEISS Sigma 300扫描电子显微镜对试样的断口进行观察,对试样断裂的影响因素以及断裂机理等进行分析.
2. 试验结果与分析
2.1 微观组织分析
在500倍光学显微镜下,对X65钢焊接试样的母材、热影响区和焊缝区域进行金相观察,显微组织如图3所示. 由图3可知,X65钢母材中准多边形铁素体(quasi-polygonal ferrite,QF)含量较高,并含有板条贝氏体(lath bainite,LB)和弥散的粒状碳化物.焊缝区域主要由PF、针状铁素体(acicular ferrite,AF)、粒状贝氏体(granular bainite,GB)和呈羽毛状的上贝氏体(upper bainite,UB)组成. FGHAZ主要由细小且均匀的F和P组成,使该区域力学性能显著优于其他热影响区域. CGHAZ内部含有GB、M-A组元、AF和PF. 此区域的焊接热循环特征为升温速度快、峰值温度高,奥氏体晶粒在形成时急剧长大,在冷却后得到粗大的组织,使力学性能显著下降. M-A组元较粗大,容易在腐蚀环境中溶解,使得材料自发生成的保护膜产生孔洞,从而降低材料的抗SCC性能[14].
2.2 SSRT结果分析
采用Cortest应力腐蚀疲劳设备进行SSRT,对H2S以及3.5% NaCl溶液中的SCC性能进行研究. 将未充氢以及预充氢时间为1,2,3天和4天的试样分别在空气、3.5% NaCl溶液和H2S腐蚀环境中以1 × 10−6 s−1的应变速率进行拉伸. 所有试样的力学性能数据如表4所示. 在空气环境下,不同的预充氢时间对塑性的影响较小,但从最大应力能看出,预充氢试样较未充氢试样的抗拉强度显著下降.
表 4 不同环境下SSRT数据Table 4. SSRT datas in different environments环境
类型预充氢时间t/天 断后伸长率 Α(%) 断面收缩率 Z(%) 最大应力 σmax/MPa 最大应变 εmax(%) 空气 0 3.69 76 656 15 1 3.77 81 575 16 2 3.70 81 568 16 3 3.53 82 576 17 4 4.10 82 538 15 NaCl溶液 0 3.68 76 626 18 1 3.55 79 577 17 2 3.39 78 582 17 3 2.94 74 579 18 4 3.37 73 527 13 H2S 0 2.07 67 577 11 1 1.60 69 577 11 2 2.00 72 565 12 3 2.16 52 560 10 4 2.15 44 504 8 在NaCl溶液及H2S腐蚀环境中进行拉伸的试样,预充氢时间对断后伸长率的影响较小,但从最大应变和断面收缩率可以看出,预充氢4天的试样力学性能明显下降,尤其是在H2S腐蚀环境中,断面收缩率由未充氢的67%下降至44%. 此外,结合SSRT试验数据,进行计算处理得到应力−应变曲线如图4所示. 由图4可知,在同一环境下,不同预充氢天数的应力−应变曲线在前期弹性阶段几乎重合,但同一环境下未充氢试样的屈服强度和抗拉强度比其他预充氢试样整体偏大. 此外,预充氢前3天的应力−应变曲线变化不大,但预充氢4天的试样在3种环境下的应力−应变曲线都有较大变化,其屈服强度、抗拉强度和最大应变等性能均发生了显著下降. 应力腐蚀敏感性与空气和两种腐蚀环境下断面收缩率、断后伸长率和最大应力等参数的变化程度有关. 为了对试样的应力腐蚀敏感性进行定量分析,试验采用断面收缩率作为指标来计算应力腐蚀敏感性系数,以此来定量代表试样的应力腐蚀敏感性. 试样的应力腐蚀敏感性系数为
$$ E_{Z} = \left(1-\frac{Z_{\text {1}}}{Z_{\text {0}}}\right) \times 100 \% $$ (1) 式中:Z1为腐蚀环境中试样的断面收缩率;Z0为空气环境中试样的断面收缩率.
应力腐蚀敏感性系数EZ越大,代表以断面收缩率为指标时,试样在该腐蚀溶液中的抗SCC能力越差、应力腐蚀敏感性越高. 应力腐蚀敏感性系数EZ计算结果,如图5所示. 试样在H2S腐蚀环境中的应力腐蚀敏感性要显著高于NaCl溶液. 在H2S腐蚀环境中,应力腐蚀敏感性最低为预充氢2天试样(EZ为11.09%),最高为预充氢4天试样(EZ为46.38%);而在NaCl溶液中,应力腐蚀敏感性最高为预充氢4天试样(EZ为11.14%),与NACE A溶液环境下EZ最低值接近,并且为最高值的1/4. 对预充氢时间进行分析可知,在NaCl溶液腐蚀环境下,预充氢能够增加试样的应力腐蚀敏感性,随着预充氢时间的增长,同一环境下试样的应力腐蚀敏感性逐渐增大,并且从第3天开始应力腐蚀敏感性有大幅度的增加,当第4天时达到最大. 在H2S腐蚀环境中,预充氢对试样应力腐蚀敏感性的影响规律与NaCl溶液腐蚀环境接近,但从预充氢2天增加至4天的过程中,试样应力腐蚀敏感性的增长幅度大于NaCl溶液腐蚀环境,这是由于预充氢与H2S对材料应力腐蚀具有协同作用,从而导致应力腐蚀敏感性更容易增大.
2.3 断口分析
为进一步对试样应力腐蚀敏感性进行分析,采用ZEISS Sigma 300扫描电镜对试样进行断口分析,试样宏观断口形貌如图6所示. 根据2.2节可知,预充氢4天的试样应力腐蚀敏感性最高,与其他预充氢时间相比具有显著差异,故仅选择3种环境下未充氢以及预充氢4天的试样进行断口分析. 由图6(a)和图6(d)可知,空气环境下未充氢和预充氢4天的试样断口均呈现出明显的颈缩现象,并且断口表面粗糙,产生较多凹坑,可观察到显著的塑性流动现象. 断口可见较多的韧窝,为典型的韧性断裂特征. 此外,未充氢试样比预充氢4天的颈缩程度更大,说明预充氢使得试样的韧性下降,这和前文对SSRT试验结果的分析一致. 观察图6(b)和图6(e)可知,NaCl溶液中的未充氢试样断口同样呈现出明显的颈缩现象,而预充氢4天试样的断口虽然可以观察到部分韧窝,但是颈缩现象不明显,并且表面较为平整,这同样说明预充氢时间达到一定值时,试样的韧性会有显著下降. 观察图6(c)和图6(f)可知,H2S腐蚀环境中的未充氢试样断口仍可以观察到大小不一的韧窝,但颈缩现象不明显,说明与其他两种环境相比,试样在H2S腐蚀环境下塑性下降最多. 而预充氢4天时断口观察不到明显的颈缩现象,且表面相对平整,并且基本不存在较大的韧窝形状,只能观察到少数细微的孔洞. 此外,在两个断口表面还存在部分舌状花样和河流状花纹,故试样此时的断裂方式为准解理断裂.
图 6 3种环境下未充氢及预充氢4天试样正面断口宏观形貌Figure 6. Macroscopic fracture morphology of the hydrogen uncharged and four days hydrogen pre-charging samples in three environment. (a) hydrogen uncharged samples in air; (b) hydrogen uncharged samples in the corrosion environment of NaCl solution; (c) hydrogen uncharged samples in the corrosion environment of H2S; (d) four days hydrogen pre-charging samples in air; (e) four days hydrogen pre-charging samples in the corrosion environment of NaCl solution; (f) four days hydrogen pre-charging samples in the corrosion environment of H2S试样断口的韧窝数量越少、直径越小,代表材料韧性越差,断面收缩率越小,故通过比较试样在空气和腐蚀环境下韧窝之差,可以判断两种环境下断面收缩率的差距大小,根据式(1)可进一步判断试样应力腐蚀敏感性的大小. 故采用扫描电镜对断口形貌放大2000倍,通过对比断口微观形貌以及韧窝情况来进行判断,如图7所示. 观察图7(a)和图7(b)可知空气和NaCl溶液腐蚀环境下,对于未充氢试样,两种环境下试样断口的韧窝都较多,属于明显的韧性断裂,并且韧窝差距不大,结合图5可知,未充氢条件下NaCl溶液中试样EZ为0.67%,故判断未充氢试样的应力腐蚀敏感性较小. 观察图7(d)和图7(e)可知,对于预充氢4天试样断口,NaCl溶液腐蚀环境产生了明显的岩石状形貌,有较多半圆状条纹,属于准解理断裂特征,其韧窝数量和大小都明显不如空气环境,结合图5可知,此条件下EZ为11.14%,说明此时试样应力腐蚀敏感性较未充氢情况显著增大. 对比空气和H2S腐蚀环境试样断口可得到类似的结论. H2S腐蚀环境预充氢4天试样表面存在腐蚀产物,从未经腐蚀的区域可以观察韧窝现象. 观察图7(f)可知,相比未充氢试样,预充氢4天试样在H2S腐蚀环境中的韧窝现象相对空气环境明显减少,结合图5可知,H2S腐蚀环境下,EZ值在未充氢和预充氢4天条件下分别为11.96%和46.38%,同样说明预充氢导致试样应力腐蚀敏感性增大.
图 7 3种环境下未充氢及预充氢4天试样正面断口微观形貌Figure 7. Micromorphology fracture morphology of the hydrogen uncharged and four days hydrogen pre-charging samples in three environment. (a) hydrogen uncharged samples in air; (b) hydrogen uncharged samples in the corrosion environment of NaCl solution; (c) hydrogen uncharged samples in the corrosion environment of H2S; (d) four days hydrogen pre-charging samples in air; (e) four days hydrogen pre-charging samples in the corrosion environment of NaCl solution; (f) four days hydrogen pre-charging samples in the corrosion environment of H2S对未充氢以及预充氢4天,在3种环境下拉伸的试样断口附近侧面形貌进行分析,如图8所示. 由图可知,6组试样断口组织变化不大,主要包括QF,GB,AF和M-A组元等. 此外,除空气和NaCl溶液腐蚀环境下未充氢试样表面外,其余4组试样表面存在较多孔洞和微裂纹. 通过对比图8(a)和图8(d)、对比图8(b)和图8(e)可知,试验进行的预充氢使材料内部微裂纹和孔洞现象加剧,结合图4中空气环境未充氢试样与其余环境试样的应力−应变曲线差异可知,预充氢使得材料塑性、韧性和强度明显下降,进而在腐蚀环境和应力作用下更易发生开裂,材料抗SCC能力降低. 微裂纹和孔洞主要起源于原奥氏体晶界和M-A组元. 原奥氏体晶界附近容易产生杂质和合金元素的偏析,造成晶界之间结合强度下降,造成应力集中,导致细微裂纹的产生. 此外,由于预充氢和H2S腐蚀环境都使得试样内部存在较多氢原子,并容易聚集在这些缺陷处,从而产生新的氢分子,故部分原奥氏体晶界处产生了较大氢压,由此导致氢致裂纹和孔洞的产生. 裂纹持续长大会使材料脆化加剧,进而导致SCC. 而产生于M-A组元的微裂纹与孔洞主要位于M-A组元和F基体的界面处.
图 8 3种环境下未充氢及预充氢4天试样断口附近侧面微观形貌Figure 8. Microscopic morphology of the side near the hydrogen uncharged and four days hydrogen precharging samples fracture in three environment. (a) hydrogen uncharged samples in air; (b) hydrogen uncharged samples in the corrosion environment of NaCl solution; (c) hydrogen uncharged samples in the corrosion environment of H2S; (d) four days hydrogen pre-charging samples in air; (e) four days hydrogen pre-charging samples in the corrosion environment of NaCl solution; (f) four days hydrogen pre-charging samples in the corrosion environment of H2S结合文献[15-16]可知,较软F和沉淀于F之上的硬M-A组元在一起形成了腐蚀性微电池,并产生微耦合效应. 其中作为阴极的M-A组元,加速了F的阳极溶解,促进点蚀坑的形成. 在外界拉应力作用下,M-A组元周围容易产生位错的不断堆积和应力集中,进而促进裂纹萌生和扩展. M-A组元具有很强的氢捕获特性,使得其内部也容易产生氢致裂纹和孔洞.
观察图8中组织可知,微裂纹主要被QF晶界以及AF所终止,GB在其中几乎没有发挥作用. 结合文献[17-19]可知,首先,微裂纹生长方向呈特定角度时,容易被大角度的QF晶界阻止,在此处继续进行扩展需要更多能量,从而使得裂纹的扩展受到阻碍. 而GB虽然数量多,但晶界取向接近,一般为低于15°的小角度晶界,比QF晶界对裂纹的阻碍作用小. 试样中的AF可以使组织均匀化、晶粒细化,并且对裂纹尖端扩展呈阻碍作用,使裂纹扩展方向发生变化,或者通过释放裂纹尖端应力集中,使得裂纹停止继续扩展.
3. 结论
(1) X65焊接接头CGHAZ存在大块PF和M-A组元等组织,此处容易产生裂纹的萌生和扩展.
(2)预充氢能够降低试样在空气和两种腐蚀环境下的力学性能并使应力腐蚀敏感性升高,对于未充氢试样,NaCl溶液腐蚀环境的应力腐蚀敏感性系数EZ和H2S腐蚀环境的EZ分别为0.67%和11.96%,而当预充氢4天时,NaCl溶液腐蚀环境的EZ和H2S腐蚀环境的EZ分别达到11.14%和46.38%.
(3)试样在空气环境主要发生韧性断裂,在NaCl溶液和H2S两种腐蚀环境中主要发生了准解理断裂. 且预充氢4天的试样在腐蚀环境下的韧窝情况较空气环境显著下降,应力腐蚀敏感性增加. 此外,微裂纹和孔洞主要产生于M-A组元以及原奥氏体晶界附近,并且预充氢提供给试样的固溶氢原子容易聚集在这两种区域,从而产生氢致裂纹.
(4)试样在H2S腐蚀环境下的应力腐蚀敏感性系数EZ显著大于NaCl溶液腐蚀环境. 随着预充氢时间的增加,H2S腐蚀环境下试样EZ的增长幅度也大于NaCl溶液腐蚀环境增长幅度.
-
图 6 3种环境下未充氢及预充氢4天试样正面断口宏观形貌
Figure 6. Macroscopic fracture morphology of the hydrogen uncharged and four days hydrogen pre-charging samples in three environment. (a) hydrogen uncharged samples in air; (b) hydrogen uncharged samples in the corrosion environment of NaCl solution; (c) hydrogen uncharged samples in the corrosion environment of H2S; (d) four days hydrogen pre-charging samples in air; (e) four days hydrogen pre-charging samples in the corrosion environment of NaCl solution; (f) four days hydrogen pre-charging samples in the corrosion environment of H2S
图 7 3种环境下未充氢及预充氢4天试样正面断口微观形貌
Figure 7. Micromorphology fracture morphology of the hydrogen uncharged and four days hydrogen pre-charging samples in three environment. (a) hydrogen uncharged samples in air; (b) hydrogen uncharged samples in the corrosion environment of NaCl solution; (c) hydrogen uncharged samples in the corrosion environment of H2S; (d) four days hydrogen pre-charging samples in air; (e) four days hydrogen pre-charging samples in the corrosion environment of NaCl solution; (f) four days hydrogen pre-charging samples in the corrosion environment of H2S
图 8 3种环境下未充氢及预充氢4天试样断口附近侧面微观形貌
Figure 8. Microscopic morphology of the side near the hydrogen uncharged and four days hydrogen precharging samples fracture in three environment. (a) hydrogen uncharged samples in air; (b) hydrogen uncharged samples in the corrosion environment of NaCl solution; (c) hydrogen uncharged samples in the corrosion environment of H2S; (d) four days hydrogen pre-charging samples in air; (e) four days hydrogen pre-charging samples in the corrosion environment of NaCl solution; (f) four days hydrogen pre-charging samples in the corrosion environment of H2S
表 1 ER70S-6焊丝化学成分(质量分数,%)
Table 1 ER70S-6 welding wire chemical compositions
C Mn Si P S Fe 0.10 1.70 1.10 0.015 0.008 余量 表 2 X65钢的主要化学成分(质量分数,%)
Table 2 Main chemical compositions of X65 steel
C Si Mn Nb Ti S Ni P Cu Fe 0.098 0.196 1.193 0.022 0.003 0.003 0.027 0.013 0.067 余量 表 3 焊接工艺参数
Table 3 Welding process parameters
焊接方法 焊接电流
I/A电弧电压
U/V焊接速度
v/(mm·min−1)保护气流量
Q/(L·min−1)焊丝伸出长度
L/mmCMT 142 ~ 144 13.2 ~ 13.7 360 ~ 470 30 8 ~ 10 GMAW 188 ~ 206 21.6 ~ 22.0 360 ~ 470 30 8 ~ 10 表 4 不同环境下SSRT数据
Table 4 SSRT datas in different environments
环境
类型预充氢时间t/天 断后伸长率 Α(%) 断面收缩率 Z(%) 最大应力 σmax/MPa 最大应变 εmax(%) 空气 0 3.69 76 656 15 1 3.77 81 575 16 2 3.70 81 568 16 3 3.53 82 576 17 4 4.10 82 538 15 NaCl溶液 0 3.68 76 626 18 1 3.55 79 577 17 2 3.39 78 582 17 3 2.94 74 579 18 4 3.37 73 527 13 H2S 0 2.07 67 577 11 1 1.60 69 577 11 2 2.00 72 565 12 3 2.16 52 560 10 4 2.15 44 504 8 -
[1] 刘雪, 钟史放, 徐连勇, 等. 不同应力幅下X65管线钢焊接接头的腐蚀疲劳行为[J]. 焊接学报, 2023, 44(7): 24 − 31,78. doi: 10.12073/j.hjxb.20220830001 Liu Xue, Zhong Shifang, Xu Lianyong, et al. Corrosion fatigue behavior of X65 pipeline steel welded joints under different stress ranges[J]. Transactions of the China Welding Institution, 2023, 44(7): 24 − 31,78. doi: 10.12073/j.hjxb.20220830001
[2] Zhu N, Song H, Qian F, et al. Influence of exhaust pipe structure on urea-related deposits in diesel engine SCR system[J]. Processes, 2023, 11(4): 1199. doi: 10.3390/pr11041199
[3] Khan D, Hansen S G, Bjernemose J H, et al. Experimentation and numerical modeling of SCR spray droplets pre and post impingement on a mixer plate[J]. Fuel, 2023, 336: 126788. doi: 10.1016/j.fuel.2022.126788
[4] Han Y D, Zhong S F, Tian L, et al. Welding heat input for synergistic improvement in toughness and stress corrosion resistance of X65 pipeline steel with pre-strain[J]. Corrosion Science, 2022, 206: 110478. doi: 10.1016/j.corsci.2022.110478
[5] Yang X J, Sun F L, Li Q Z, et al. Effect of hydrogen charging on the stress corrosion cracking behavior of X70 steel in simulated deep seawater environment[J]. Metals, 2022, 12(2): 334 − 350. doi: 10.3390/met12020334
[6] Wang B Y, Ouyang L, Xu J X, et al. Study on stress corrosion cracking behavior of Incoloy825/X65 bimetallic composite pipe welded joint in wet hydrogen sulfide environment[J]. Metals, 2022, 12(4): 632-644.
[7] 李泽宇, 徐连勇, 郝康达, 等. MAG和激光扫描-电弧复合焊X80钢接头组织和性能[J]. 焊接学报, 2022, 43(5): 36 − 42. doi: 10.12073/j.hjxb.20220101002 Li Zeyu, Xu Lianyong, Hao Kangda, et al. Microstructure and properties of MAG and oscillating laser arc hybrid welded X80 steel[J]. Transactions of the China Welding Institution, 2022, 43(5): 36 − 42. doi: 10.12073/j.hjxb.20220101002
[8] Wu S J, Feng J, Cheng F J, et al. Research on root appearance and fatigue life of steel catenary riser (SCR) using GMAW/GTAW-P double-sided root welding process[J]. International Journal of Pressure Vessels and Piping, 2023, 201: 104866. doi: 10.1016/j.ijpvp.2022.104866
[9] Zhang L, Zhao T F. Frequency domain fatigue evaluation on SCR girth-weld based on structural stress[J]. China Ocean Engineering, 2024, 38(2): 255 − 270. doi: 10.1007/s13344-024-0022-1
[10] Adhikari S, Dhongde N R, Talukdar M K, et al. Investigation of carbon steels (API 5L X52 and API 5L X60) dissolution CO2-H2S solutions in the presence of acetic acid: mechanistic reaction pathway and kinetics[J]. Arabian Journal for Science and Engineering, 2024, 49(6): 8363 − 8381. doi: 10.1007/s13369-024-08812-1
[11] Pazhanivel B, Sathiya P, Muthuraman K, et al. Influence of NaCl environment on stress corrosion cracking of additive manufactured Ti-6Al-4V alloy[J]. Engineering Failure Analysis, 2021, 127: 105515. doi: 10.1016/j.engfailanal.2021.105515
[12] Qi F Z, Zhang X L, Wu G H, et al. Effect of heat treatment on the stress corrosion cracking behavior of cast Mg-3Nd-3Gd-0.2Zn-0.5Zr alloy in a 3.5 wt% NaCl salt spray environment[J]. Materials Characterization, 2022, 183: 111630. doi: 10.1016/j.matchar.2021.111630
[13] 董晓明. 高强度抗腐蚀油管和套管用钢的抗H2S应力腐蚀行为研究[D]. 上海: 上海大学, 2019. Dong Xiaoming. Research on sulfide stress corrosion behavior of high strength SSCC resistant tubing and casing steel[D]. Shanghai: Shanghai University, 2019.
[14] 赵伟. X80管线钢与其焊接接头耐蚀性研究[D]. 济南: 山东大学, 2016. Zhao Wei. Study on corrosion resistance of X80 pipeline steel and its welded joint[D]. Jinan: Shandong University, 2016.
[15] Liu P, Zhang Q H, Watanabe Y, et al. A critical review of the recent advances in inclusion-triggered localized corrosion in steel[J]. NPJ Materials Degradation, 2022, 6(1): 81 − 97. doi: 10.1038/s41529-022-00294-6
[16] Zhang Y, Dong L J, Li H, et al. Insights into the role of partially mixed zones in sulfide stress corrosion cracking of the Inconel 625/X80 weld overlay[J]. International Journal of Hydrogen Energy, 2023, 48(73): 28583 − 28600. doi: 10.1016/j.ijhydene.2023.04.061
[17] Hu J T, Liu Y, Wang G, et al. Effects of microstructure on the low-temperature toughness of an X80 × D1422mm heavy-wall heat-induced seamless bend[J]. Metals, 2021, 11(7): 1055 − 1072. doi: 10.3390/met11071055
[18] 郭晓静, 苏崇涛. 管线钢冲击断口的显微分析[J]. 理化检验-物理分册, 2021, 57(12): 44 − 48. doi: 10.11973/lhjy-wl202112009 Guo Xiaojing, Su Chongtao. Fractographic analysis of impact fracture surface for pipeline steels[J]. Physical Testing and Chemical Analysis(Part A: Physical Testing), 2021, 57(12): 44 − 48. doi: 10.11973/lhjy-wl202112009
[19] Luo X, Chen X H, Wang Z D. High toughness independent of low-medium heat inputs in coarse-grain heat-affected zone of a designed HSLA steel[J]. Steel Research International, 2017, 88(11): 1700019. doi: 10.1002/srin.201700019