高级检索

S32101双相不锈钢U形坡口激光填充焊接修复工艺

朱加雷, 郭方涛, 李守根, 张仁祥, 张晓春, 梅乐, 黄国军

朱加雷, 郭方涛, 李守根, 张仁祥, 张晓春, 梅乐, 黄国军. S32101双相不锈钢U形坡口激光填充焊接修复工艺[J]. 焊接学报, 2024, 45(10): 69-78. DOI: 10.12073/j.hjxb.20231007001
引用本文: 朱加雷, 郭方涛, 李守根, 张仁祥, 张晓春, 梅乐, 黄国军. S32101双相不锈钢U形坡口激光填充焊接修复工艺[J]. 焊接学报, 2024, 45(10): 69-78. DOI: 10.12073/j.hjxb.20231007001
ZHU Jialei, GUO Fangtao, LI Shougen, ZHANG Renxiang, ZHANG Xiaochun, MEI Le, HUANG Guojun. Laser filling welding repair process for U-shaped groove of S32101 duplex stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(10): 69-78. DOI: 10.12073/j.hjxb.20231007001
Citation: ZHU Jialei, GUO Fangtao, LI Shougen, ZHANG Renxiang, ZHANG Xiaochun, MEI Le, HUANG Guojun. Laser filling welding repair process for U-shaped groove of S32101 duplex stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(10): 69-78. DOI: 10.12073/j.hjxb.20231007001

S32101双相不锈钢U形坡口激光填充焊接修复工艺

基金项目: 国家自然科学基金联合基金重点支持项目(U22B20127);北京市科技计划重点项目(KZ202210017023);北京市属高校分类发展项目(11000023T000002199202);北京市教委一般科技项目(Z2023-007);北京市属高等学校高水平科研创新团队建设支持计划项目(BPHR20220110);河北省重点研发计划项目(22341801D、23311802D)
详细信息
    作者简介:

    朱加雷,博士,教授,博士研究生导师;主要研究方向为水下焊接、增材制造和激光成形加工等;Email: zhujialei@bipt.edu.cn

    通讯作者:

    李守根,博士,讲师;Email: lishougen@bipt.edu.cn.

  • 中图分类号: TG 456.7

Laser filling welding repair process for U-shaped groove of S32101 duplex stainless steel

  • 摘要:

    文中采用开设坡口的方式去除裂纹、通过坡口填充焊接修复的方式进行维修,在空气环境中开展了S32101双相不锈钢激光填丝焊接修复工艺试验研究,焊接工艺及相关参数可以作为水下焊接研究的参考依据. 为避免过高激光功率输入损坏焊接辅助装置,在5000 ~ 6000 W激光功率的工艺窗口下,对开设的坡口进行了3次填充修复及4次填充修复,对焊缝截面、显微组织、力学性能以及耐腐蚀性能分别进行了研究. 在试验过程中,采用了光学显微镜和扫描电镜等,分析了焊接过程中热输入对微观组织转变的影响. 同时通过对比不同激光功率下焊缝的拉伸性能和显微硬度,进一步揭示了工艺参数对焊缝力学性能和耐腐蚀性能的具体影响,从而优化了修复工艺的稳定性和可靠性. 结果表明,3次填充修复后的焊缝存在气孔以及冶金熔合不良等问题,4次填充修复后的焊缝截面未见气孔缺陷,拉伸试件断在母材位置. 层间焊道的预热和再热促使焊缝中奥氏体析出,焊缝中奥氏体含量略高于铁素体含量,平均硬度略低于母材. 焊缝中较高含量的Ni元素和Mo元素使得焊缝的耐腐蚀性能优于母材,4次填充修复得到的焊缝满足空气环境中修复质量标准要求.

    Abstract:

    In this paper, cracks were removed by beveling, and repairs were performed using groove-filling welding techniques. An experimental investigation of laser wire-filling welding repair of S32101 duplex stainless steel in an air environment was conducted. The welding procedure and related parameters may serve as a reference for underwater welding studies. To prevent damage to the welding auxiliary equipment caused by excessive laser power input, comparative experiments were performed with three filling repairs and four filling repairs under a process window of 5000 ~ 6000 W laser power. The cross-sections, microstructure, mechanical properties, and corrosion resistance of the welds were thoroughly analyzed. During the experiments, optical microscopy and scanning electron microscopy were used to examine the effects of heat input during welding on microstructural transformations. Additionally, by comparing the tensile properties and microhardness of welds at different laser power levels, the specific influence of process parameters on the mechanical properties and corrosion resistance of the welds was further elucidated, thereby optimizing the stability and reliability of the repair process. The results showed that the welds repaired with three filling repairs exhibited issues such as porosity and poor metallurgical fusion, whereas the cross-sections of the welds repaired with four filling repairs showed no porosity defects, and the tensile specimens fractured at the base metal. Preheating and reheating of the interpass welding promoted the precipitation of austenite in the welds, and the austenite content was slightly higher than that of ferrite, with the average hardness being slightly lower than that of the base metal. The higher Ni and Mo content in the welds contributed to superior corrosion resistance compared to the base metal. The welds repaired with four filling repairs met the quality standards for repairs conducted in an air environment.

  • 图  1   母材及U形坡口尺寸

    Figure  1.   Base material and U-groove size. (a) base material microstructure; (b) groove size (mm)

    图  2   激光焊接试验系统

    Figure  2.   Laser welding experimental system

    图  3   坡口填充焊接示意图

    Figure  3.   Schematic diagram of groove filler welding. (a) four slices; (b) three slices

    图  4   拉伸试件尺寸(mm)

    Figure  4.   Tensile specimen size

    图  5   焊缝截面宏观形貌

    Figure  5.   Macroscopic shape of weld section

    图  6   拉伸试验结果

    Figure  6.   Tensile test results. (a) stress strain curve;(b) tensile properties

    图  7   拉伸断口形貌

    Figure  7.   Tensile fracture profile. (a) specimen 3; (b) local enlargement of region A; (c) high magnification enlargement of region A; (d) specimen 4; (e) local enlargement of region B; (f) high magnification enlargement of region B; (g) specimen 5; (h) local enlargement of region C; (i) high magnification enlargement of region C

    图  8   焊缝底部至顶部的显微硬度分布

    Figure  8.   Microhardness distribution from the bottom to the top of the weld

    图  9   焊缝组织从1500 ℃到600 ℃的析出相图

    Figure  9.   Precipitation phase diagram of the weld tissue from 1500 ℃ to 600 ℃

    图  10   焊缝微观组织

    Figure  10.   Microstructure of the weld zone. (a) middle of cap weld; (b) cap weld fusion zone; (c) middle of weld; (d) reheat affected zone; (e) upper weld root region under rapid cooling; (f) lower weld root fusion boundary

    图  11   焊后组织析出模型

    Figure  11.   Post-weld precipitation model

    图  12   焊缝XRD结果

    Figure  12.   XRD results of weld metal

    图  13   γ(111)和δ(110)衍射峰的半峰全宽

    Figure  13.   FWHP of the γ(111) and δ(110) diffraction peak

    图  14   极化曲线图

    Figure  14.   Graph of polarisation curves

    表  1   焊丝及母材化学成分(质量分数,%)

    Table  1   Welding wire and base material chemical compositions

    材料 C Si Mn Cr Mo Ni Cu N Fe
    S32101 0.023 0.59 4.90 21.50 0.26 1.62 0.24 0.21 余量
    ER-2209 0.022 0.35 1.59 22.56 3.05 7.62 0.06 0.15 余量
    下载: 导出CSV

    表  2   焊接工艺参数

    Table  2   Process parameters of welding

    试件 激光功率
    P/W
    送丝速度
    vw/(cm·min−1)
    填充次数
    n/次
    抬升高度
    h/mm
    1 5000 462 3 2.0
    2 5300 462 3 2.0
    3 5600 462 3 2.0
    4 6000 462 3 2.0
    5 5000 346 4 1.5
    6 5300 346 4 1.5
    7 5600 346 4 1.5
    8 6000 346 4 1.5
    下载: 导出CSV

    表  3   自腐蚀电位和自腐蚀电流

    Table  3   Self-corrosion potential and self-corrosion current

    位置 腐蚀电压
    Ecorr /V
    电流密度
    icorr /(10−8 A·cm−2)
    试件5 −0.106 5.08
    试件6 −0.170 4.98
    试件7 −0.234 28.30
    试件8 −0.248 20.40
    母材 −0.171 55.00
    下载: 导出CSV

    表  4   焊缝和母材化学元素含量(质量分数,%)

    Table  4   Chemical element contents of the weld and base material

    位置 C Si Mn Cr Mo Ni N Fe
    试件5 0.015 1.00 2.06 23.67 2.36 6.03 0.24 余量
    试件6 0.013 1.08 2.91 23.34 1.90 4.91 0.29 余量
    试件7 0.012 1.38 2.30 23.23 2.23 5.71 0.27 余量
    试件8 0.016 0.92 2.38 23.65 2.03 5.33 0.28 余量
    母材 0.024 1.02 4.71 23.32 0.49 1.30 0.22 余量
    下载: 导出CSV

    表  5   铬当量和镍当量

    Table  5   Chromium equivalent and nickel equivalent

    位置 铬当量Creq(%) 镍当量Nieq(%) Creq/Nieq
    试件 27.53 15.010 1.83
    试件 26.86 15.845 1.69
    试件 27.53 15.650 1.75
    试件 27.06 15.610 1.73
    母材 25.34 10.975 2.30
    下载: 导出CSV
  • [1]

    Afzali N, Jabour G, Stranghoner N, et al. A comparative study into the fracture toughness properties of duplex stainless steels[J]. Journal of Constructional Steel Research, 2024, 212: 108283. doi: 10.1016/j.jcsr.2023.108283

    [2]

    Sakata M, Kadoi K, Inoue H. Age-hardening behaviors of the weld metals of 22% Cr and 25% Cr duplex stainless steels at 400° C[J]. Journal of Nuclear Materials, 2023, 581: 154438. doi: 10.1016/j.jnucmat.2023.154438

    [3]

    Yang Z N, Li Y, Xu Z G, et al. Characterization of σ-phase precipitation and effect on performance in duplex stainless steel S31803[J]. Engineering Failure Analysis, 2024, 157: 107836. doi: 10.1016/j.engfailanal.2023.107836

    [4]

    Pan Y, Sun B Z, Chen H T, et al. Stress corrosion cracking behavior and mechanism of 2205 duplex stainless steel under applied polarization potentials[J]. Corrosion Science, 2024, 231: 111978. doi: 10.1016/j.corsci.2024.111978

    [5]

    Ning J, Jie S Y, Guo C C, et al. Influence of environmental pressure on the energy coupling and droplet transition behavior in laser welding with filler wire[J]. Journal of Manufacturing Processes, 2024, 116: 109 − 119. doi: 10.1016/j.jmapro.2024.02.053

    [6]

    Hu Y, Shi Y H, Wang K, et al. Effect of heat input on the microstructure and mechanical properties of local dry underwater welded duplex stainless steel[J]. Materials, 2023, 16(6): 2289. doi: 10.3390/ma16062289

    [7]

    Ke W C, Liu Y, Biruke F T, et al. Numerical study on multiphase evolution and molten pool dynamics of underwater wet laser welding in shallow water environment[J]. International Journal of Heat and Mass Transfer, 2024, 220: 124976. doi: 10.1016/j.ijheatmasstransfer.2023.124976

    [8]

    Sun G F, Wang Z D, Lu Y, et al. Underwater laser welding/cladding for high-performance repair of marine metal materials: a review[J]. Chinese Journal of Mechanical Engineering, 2022, 35(1): 42 − 60. doi: 10.1186/s10033-022-00722-3

    [9]

    Sun J Q, Yang Y, Wang K, et al. A comparative study on the performance and microstructure of 304NG stainless steel in underwater and air laser welding[J]. Materials, 2024, 17(15): 3854. doi: 10.3390/ma17153854

    [10]

    Liao H P, Wang Z M, Chi P, et al. Double pulsed current adopted in local dry underwater WAAM to simultaneously enhanced strength and ductility of 308 L multi-layer component[J]. Journal of Manufacturing Processes, 2024, 118: 389 − 406. doi: 10.1016/j.jmapro.2024.03.066

    [11]

    Zhu Y H, Zhang Y J, Li C W, et al. Investigation of microstructure, oxides, cracks, and mechanical properties of Ti-4Al-2V joints prepared using underwater wet laser welding[J]. Materials, 2024, 17(8): 1778. doi: 10.3390/ma17081778

    [12]

    Zhu X Y, Yu F, Wu D K, et al. Laser-induced damage of an anti-resonant hollow-core fiber for high-power laser delivery at 1 µm[J]. Optics Letters, 2022, 47(14): 3548 − 3551. doi: 10.1364/OL.457749

    [13]

    Hu J, Guo L. Study of dynamic welding pool for AZ31B magnesium alloy with adjustable ring mode laser welding[J]. The International Journal of Advanced Manufacturing Technology, 2024, 132(7): 3313 − 3332.

    [14]

    Li X, Liu C, Wang X Y, et al. Effect of microstructure on small fatigue crack initiation and early propagation behavior in super austenitic stainless steel 654SMO[J]. International Journal of Fatigue, 2024, 179: 108022. doi: 10.1016/j.ijfatigue.2023.108022

    [15]

    Yang X, Wang S , Pan H P, et al. Microstructure transformation in laser additive manufactured NiTi alloy with quasi-in-situ compression[J]. Micromachines, 2022, 13(10): 1642.

    [16]

    Karimi A, Karimipour A, Akbari M, et al. Investigating the mechanical properties and fusion zone microstructure of dissimilar laser weld joint of duplex 2205 stainless steel and A516 carbon steel[J]. Optics & Laser Technology, 2023, 158: 108875.

    [17]

    Liu X C, Li W T, Zhou Y Q, et al. Multiple effects of forced cooling on joint quality in coolant-assisted friction stir welding[J]. Journal of Materials Research and Technology, 2023, 25: 4264 − 4276. doi: 10.1016/j.jmrt.2023.06.248

    [18]

    Han Y D, Zhang Y K, Jing H Y, et al. Microstructure and corrosion studies on different zones of super duplex stainless steel UNS S32750 weldment[J]. Frontiers in Materials, 2020, 7: 251. doi: 10.3389/fmats.2020.00251

    [19]

    Xie X F, Li J W, Jiang W C, et al. Nonhomogeneous microstructure formation and its role on tensile and fatigue performance of duplex stainless steel 2205 multi-pass weld joints[J]. Materials Science & Engineering A, 2020, 786: 139426.

    [20]

    Shen S K, Hao L Y, Wen K K, et al. Improving mechanical properties of EP823 ferritic/martensitic steel via increasing silicon contents[J]. Journal of Materials Engineering and Performance, 2023: 1 − 15.

    [21]

    Li M M, Zou D N, Li Y N, et al. Effect of cooling rate on pitting corrosion behavior of 904L austenitic stainless steel in a simulated flue gas desulfurization solution[J]. Metals and Materials International, 2023, 29(3): 730 − 747. doi: 10.1007/s12540-022-01255-z

    [22]

    Tembhurkar C, Kataria R, Ambade S, et al. Effect of fillers and autogenous welding on dissimilar welded 316L austenitic and 430 ferritic stainless steels[J]. Journal of Materials Engineering and Performance, 2021, 30: 1444 − 1453. doi: 10.1007/s11665-020-05395-4

    [23]

    Sun J L, Tang H J, Wang C L, et al. Effects of alloying elements and microstructure on stainless steel corrosion: a review[J]. Steel Research International, 2022, 93(5): 2100450. doi: 10.1002/srin.202100450

  • 期刊类型引用(5)

    1. 于瑾佳,王琳. 磷酸盐-柠檬酸盐体系中Q235钢焊接接头磷化处理及耐蚀性. 电镀与精饰. 2023(02): 42-48 . 百度学术
    2. 柯志刚,朱丽慧,周任远,翟国丽. 钼对S30432耐热钢组织和性能的影响. 钢铁. 2020(07): 92-99 . 百度学术
    3. 韩晓辉,杨志斌,张志毅,雷振,史春元. 热输入对不锈钢激光搭接焊接头晶间腐蚀敏感性的影响. 焊接学报. 2019(04): 148-153+167 . 本站查看
    4. 张婧,李海新,殷子强,杨振林,杜永鹏,孔祥峰,袁新,李守彪. 焊接接头的腐蚀研究进展. 腐蚀科学与防护技术. 2018(06): 661-670 . 百度学术
    5. 张婧,李海新,杨振林,孔祥峰,王宁,郝长平. 水下焊接焊缝金属的晶间腐蚀研究. 热加工工艺. 2018(23): 17-20+24 . 百度学术

    其他类型引用(2)

图(14)  /  表(5)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  11
  • PDF下载量:  55
  • 被引次数: 7
出版历程
  • 收稿日期:  2023-10-06
  • 网络出版日期:  2024-09-17
  • 刊出日期:  2024-10-24

目录

    /

    返回文章
    返回