Analysis of fatigue crack growth rate of welded joint after immersion corrosion
-
摘要:
服役于海洋环境中的风力发电机,其塔筒上的焊接结构不可避免地要遭受洋流、风浪、工作过程中带来的疲劳载荷及海洋复杂环境引发的腐蚀,往往成为腐蚀疲劳失效中的薄弱环节,因此,研究焊接接头的腐蚀疲劳现象,探索其背后的运作机制具有十分重要的意义. 选用S355低合金高强钢作为试验材料,进行S355钢焊接接头在5%NaCl环境中的预腐蚀疲劳裂纹扩展试验. 试验结果表明,与未经预腐蚀的试件相比,预腐蚀48 h的试样疲劳裂纹扩展速率并没有明显增加,而预腐蚀336 h的试样疲劳裂纹扩展速率增加显著. 利用扫描电子显微镜对预腐蚀后的疲劳试件进行微观表征,观察到在裂纹扩展路径周围存在微裂纹和分支裂纹,表明金属发生了脆化. 在预腐蚀疲劳断面上,观察到了裂纹扩展模式的转变,表层金属呈现平面脆性特征,内部金属保留了疲劳韧性特征,微观表征的结果表明,预腐蚀脆化了表层金属,从而加快了试件整体的疲劳裂纹扩展速率.
-
关键词:
- S355钢 /
- 预腐蚀疲劳裂纹扩展试验 /
- 脆化
Abstract:Wind turbines operating in marine environments inevitably face fatigue loads from ocean currents, wind, waves, as well as corrosion from the complex marine environment, which often makes the welded structures on their towers vulnerable to corrosion fatigue failure, therefore, studying the corrosion fatigue phenomena in welded joints and exploring the underlying mechanisms is of great significance. S355 high strength low alloy structural steel is selected as the test material to carry out the pre-corrosion fatigue crack growth test of S355 steel welded joint in 5%NaCl environment. The test result shows that the fatigue crack growth rate of the test specimens after 48 hours of pre-corrosion is not significantly increased, while the fatigue crack growth rate of the test specimens pre-corrosion for 336 hours is significantly increased. Scanning electron microscope is used to characterize the pre-corrosion fatigue test specimens. Micro-cracks and branching cracks are observed around the crack growth paths, indicating that the metal is embrittlement. On the pre-corrosion fatigue section, the change of crack growth mode is observed, the surface metal shows brittleness fracture and the inner metal retaines fatigue toughness fracture. The results of microstructure characterization show that the pre-corrosion embrittles the surface of metal, which result in acceleration of the fatigue crack growth rate of the whole test specimen.
-
Keywords:
- S355 steel /
- pre-corrosion fatigue crack growth test /
- embrittlement
-
-
表 1 S355钢化学成分(质量分数,%)
Table 1 Chemical components of S355 steel
C Si Mn P S Cr Mo Ni Cu Fe 0.09 0.13 1.53 0.007 0.001 8 0.11 0.13 0.31 0.15 余量 表 2 焊条LB−52NSU化学成分(质量分数,%)
Table 2 Chemical components of LB−52NSU electrode
C Si Mn P S Ni Ti Mo Fe 0.05 0.57 1.18 0.006 0.001 0.52 0.011 <0.01 余量 表 3 焊接参数
Table 3 Welding parameters
焊接方法 焊接位置 电流类型 焊接电流I/A 预热温度T1/℃ 层间温度T2/℃ SMAW 平焊 DCEP 90 ~ 130 93 ~ 107 93 ~ 107 表 4 疲劳裂纹扩展试验参数
Table 4 Parameters of fatigue crack growth test
波形 频率f/Hz 应力比R 平均应力F/N 正弦波 120 0.5 7 000 -
[1] 林玉鑫, 张京业. 海上风电的发展现状与前景展望[J]. 分布式能源, 2023, 8(2): 1 − 10. Lin Yuxin, Zhang Jingye. Development status and prospect of offshore wind power[J]. Distributed Energy, 2023, 8(2): 1 − 10.
[2] Phull B, Abdullahi A A. Phull B. Marine corrosion[J]. Shreir’s Corrosion, 2010(2): 1107 − 1148.
[3] Gkatzogiannis S, Weinert J, Engelhardt I, et al. Correlation of laboratory and real marine corrosion for the investigation of corrosion fatigue behaviour of steel components[J]. International Journal of Fatigue, 2019, 126: 90 − 102. doi: 10.1016/j.ijfatigue.2019.04.041
[4] Rörup J, Fricke W. Mean compressive stress-experimental and theoretical investigation into their influence on the fatigue strength of welded structures[J]. The Journal of Strain Analysis for Engineering Design, 2005, 40(7): 631 − 642.
[5] Xu Qian, Shao Fei, Bai Linyue, et al. Corrosion fatigue crack growth mechanisms in welded joints of marine steel structures[J]. Journal of Central South University, 2021, 28(1): 58 − 71. doi: 10.1007/s11771-021-4586-0
[6] 杨永坤, 朱佳雨, 李小明, 等. 低碳合金钢带状组织控制研究现状[J]. 钢铁, 2023, 58(4): 1 − 10. Yang Yongkun, Zhu Jiayu, Li Xiaoming, et al. A review of research on banded structure control in low carbon alloy steel[J]. lron and Steel, 2023, 58(4): 1 − 10.
[7] Smith R. The determination of fatigue crack growth rates from experimental data[J]. International Journal of Fracture, 1973, 9(3): 352 − 355. doi: 10.1007/BF00049221
[8] Guo Jia, Yang Shanwu, Shang Chengjia, et al. Influence of carbon content and microstructure on corrosion behaviour of low alloy steels in a Cl− containing environment[J]. Corrosion Science, 2009, 51(2): 242 − 251. doi: 10.1016/j.corsci.2008.10.025
[9] Lee Y H, Kim G I, Kim K M, et al. Localized corrosion occurrence in low-carbon steel pipe caused by microstructural inhomogeneity[J]. Materials, 2022, 15(5): 1870. doi: 10.3390/ma15051870
[10] Qi X, Wang X, Di H, et al. Acicular ferrite nucleation mechanism in laser-MAG hybrid welds of X100 pipeline steel[J]. Materials Letters, 2021, 304: 130603.1 − 130603.4. doi: 10.1016/j.matlet.2021.130603
[11] McMurtrey M, Mills D, Burns J. The effect of pit size and density on the fatigue behaviour of a pre-corroded martensitic stainless steel[J]. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42(1): 3 − 18.
[12] Wei R. Electrochemical reactions and corrosion fatigue crack growth [M]. Beijing: Mechanical Behaviour of Materials V. Elsevier. 1988: 129-140.
[13] Polák J. Role of persistent slip bands and persistent slip markings in fatigue crack initiation in polycrystals[J]. Crystals, 2023, 13(2): 220. doi: 10.3390/cryst13020220
[14] Beachem C D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”)[J]. Metallurgical and Materials Transactions B, 1972, 3(2): 441 − 455.
[15] Martin M L, Dadfarnia M, Nagao A, et al. Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials[J]. Acta Materialia, 2019, 165: 734 − 750. doi: 10.1016/j.actamat.2018.12.014
[16] 周贤良,李晖榕,华小珍,等. X80管线钢埋弧焊焊接接头的组织和腐蚀性能[J]. 焊接学报, 2011, 32(1): 37 − 40. Zhou Xianliang, Li Huirong, Hua Xiaozhen, et al. Microstructures and corrosion properties of submerged arc welded joint for X80 pipeline steel[J]. Transactions of the China Welding Institution, 2011, 32(1): 37 − 40.
[17] Ratych L. Contribution of anodic dissolution and hydrogen embrittlement to corrosion-fatigue crack growth[J]. Materials Science, 1999, 35: 310 − 325. doi: 10.1007/BF02355475
[18] Bai Linyue, Gao Lei, Jiang Kebin. Corrosion crack nucleation mechanism in the welded structures of X65 steel in natural seawater[J]. Advances in Materials Science and Engineering, 2018(4): 1 − 14.
-
期刊类型引用(3)
1. 陶旭阳,何建萍,徐磊. 超薄板脉冲微束等离子弧焊熔池振荡频率特征. 轻工机械. 2020(03): 24-27+32 . 百度学术
2. 陶旭阳,何建萍,徐磊. 基于LabView脉冲微束等离子弧焊熔池振荡信息提取. 智能计算机与应用. 2020(03): 371-374 . 百度学术
3. 顾玉芬,席保龙,李春凯,石玗,代悦,丁彬. 基于熔池振荡的GTAW熔透实时传感与控制. 电焊机. 2020(12): 5-8+108 . 百度学术
其他类型引用(7)