高级检索

一种高难熔元素镍基高温合金的焊丝成分优化及接头力学性能

储清泉, 刘士伟, 王诗洋, 孙元, 侯星宇, 赵志鹏

储清泉, 刘士伟, 王诗洋, 孙元, 侯星宇, 赵志鹏. 一种高难熔元素镍基高温合金的焊丝成分优化及接头力学性能[J]. 焊接学报, 2024, 45(9): 50-61. DOI: 10.12073/j.hjxb.20230928001
引用本文: 储清泉, 刘士伟, 王诗洋, 孙元, 侯星宇, 赵志鹏. 一种高难熔元素镍基高温合金的焊丝成分优化及接头力学性能[J]. 焊接学报, 2024, 45(9): 50-61. DOI: 10.12073/j.hjxb.20230928001
CHU Qingquan, LIU Shiwei, WANG Shiyang, SUN Yuan, HOU Xingyu, ZHAO Zhipeng. Composition optimization of welding wire and mechanical properties of joints of nickel-based superalloy containing high refractory elements[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(9): 50-61. DOI: 10.12073/j.hjxb.20230928001
Citation: CHU Qingquan, LIU Shiwei, WANG Shiyang, SUN Yuan, HOU Xingyu, ZHAO Zhipeng. Composition optimization of welding wire and mechanical properties of joints of nickel-based superalloy containing high refractory elements[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(9): 50-61. DOI: 10.12073/j.hjxb.20230928001

一种高难熔元素镍基高温合金的焊丝成分优化及接头力学性能

基金项目: 国家科技重大专项项目(J2019-VI-0018-0133);国家自然科学基金项目(52201054);辽宁省自然科学基金面上项目(2023-MS-020);辽宁省自然科学基金博士启动项目(2023-BS-019).
详细信息
    作者简介:

    储清泉,硕士研究生;主要研究方向为高温合金焊接修复;Email: chuqq@mail.ustc.edu.cn

    通讯作者:

    王诗洋,博士,副研究员;Email: sywang16b@imr.ac.cn.

  • 中图分类号: TG 442

Composition optimization of welding wire and mechanical properties of joints of nickel-based superalloy containing high refractory elements

  • 摘要:

    K465镍基高温合金因出色的高温性能在多个领域得到了广泛应用,但由于其难熔元素含量高,焊接性存在问题,为了解决这一问题,针对K465合金设计了3种不同成分的焊丝,主要通过调整γ′形成元素Al,Ti和固溶强化元素Co的含量. 结果表明,调整焊丝成分能影响K465合金的焊接性,特别是通过降低Al,Ti的含量可以减少低熔点共晶相的析出,而增加Co的含量能提高合金的热稳定性并降低裂纹敏感性. 在3种焊丝中,高Co,低Al + Ti焊丝的焊接性最佳,焊接后的接头质量高,室温下抗拉强度为822 MPa达到母材性能的84%,并且接头的断后伸长率接近于母材.

    Abstract:

    K465 nickel-based superalloy has been widely used in many fields due to its excellent high temperature performance. However, due to its high content of refractory elements, weldability is problematic. In order to solve this problem, three kinds of welding wires with different compositions were designed for K465 alloy, mainly by adjusting the contents of γ′-forming elements Al, Ti and solution strengthening element Co. The results show that adjusting the composition of the welding wire can effectively affect the weldability of K465 alloy. In particular, the precipitation of low melting point eutectic phases can be reduced by lowering the content of Al and Ti, while increasing the content of Co improves the thermal stability of the alloy and reduces the susceptibility to cracking. Among the three kinds of welding wires, the one with high Co and low Al + Ti showed the high weldability. The welded joints were of high quality, with a tensile strength of 822 MPa at room temperature, which is 84% of the performance of the base metal, and the elongation of the joints was close to that of the base metal.

  • 焊接过程中工件受热不均匀引起焊接残余应力[1]. 铝合金热膨胀系数大,在焊接时容易形成较大的残余应力. 残余应力影响产品的承载性能和使用寿命[2-5],准确测试焊接残余应力具有重要的工程意义. 在残余应力测试方法中,X射线法因测试成本适中、设备便携、对产品无损伤等优点而得到较为广泛的应用[6-9].

    材料的均匀性假设是X射线法应力测试的基本假设之一,但是材料中晶粒的择优取向破坏了材料的均匀性,使材料呈现出微观应变不均匀的特点[10-11],进而降低X射线应力测试的精度.

    国内外学者对多晶体材料微观应变不均匀现象做了大量研究[12],Withers等人[13]指出微观应变与宏观弹性应变不同,它只在几个晶粒尺寸范围内平衡,即使卸载宏观应力,这种微观应变也依然存在. Stukowski等人[14]采用试验研究与数值计算相结合的方法证明了多晶体材料普遍存在着微观应变导致的X射线宽化现象. Wilkens[15]采用理论推演的方法证明了小角度晶界处微观应变导致X射线宽化. 现有关于铝合金X射线衍射的研究表明,当晶粒尺寸大于100 nm时,X射线衍射峰半高宽能够反应材料微观应变的大小[16-17]. 虽然以上研究揭示了微观应变对X射线衍射的影响,但关于微观应变对X射线衍射应力测试的影响及其解决办法却少有报道. 文中以6061-T6铝合金为研究对象,基于对X射线衍射峰半高宽的分析,研究在不同准直器直径及摇摆角条件下X射线衍射晶粒群的微观应变的均匀性,进而探究合理的X射线应力测试工艺参数,并对6061-T6铝合金MIG焊接接头残余应力进行测试.

    图1为等强梁尺寸及其预置应力方案图. 对3 mm厚6061-T6铝合金板用电火花加工方法按图1a所示加工2个等强梁1,2,并按图1b所示令等强梁一端固定,另一端悬挂3 kg配重块. 对1号等强梁采用单向应变片测试P点预置应力大小,对2号等强梁上P点应力采用加拿大Proto-MG40P X射线应力分析仪测试.对2号等强梁上P点采用X射线应力测试时,测试方法为同倾${\sin ^2}\psi $[18],入射X射线为Cr-Kα射线,测试晶面选取Al(311)晶面,衍射晶面的法线方向取向范围为${\sin ^2}\psi \in [0,0.6]$,并在此范围内等差值地选取30个$\psi $角进行衍射角测试,为研究不同准直器直径和摇摆角条件下X射线衍射晶粒群微观应变的均匀性,按表1设计对比试验.

    图  1  等强梁尺寸及其预置应力示意图 (mm)
    Figure  1.  Schematic diagram of equal-strength beam size and its pre-stress. (a) shape and size of equal-strength beam; (b) method of pre-stressing on equal-strength beam
    表  1  对比试验方案
    Table  1.  Comparative test plan
    组号准直器直径d/mm摇摆角$\;\beta$/(°)
    A-1 2 0
    A-2 3 0
    A-3 4 0
    B-1 4 0
    B-2 4 1
    B-3 4 2
    下载: 导出CSV 
    | 显示表格

    对2号等强梁应力测试完成后,采用电火花线切割机以P点为中心沿其四周切取8 mm × 6 mm × 3 mm试样,依次经机械磨抛和电解抛光后,采用FEI Quanta 650场发射电镜进行EBSD数据采集,并使用CHANNEL 5软件进行数据后处理.

    选取与等强梁相同批次的3 mm厚6061-T6铝合金板,采用全自动MIG焊机,以对接接头形式焊接铝合金试板,焊接电流76 A,焊接电压24 V,送丝速度3.6 mm/s,焊枪行走速度10 mm/s,气体(99.99% Ar)流量15 L/min. 焊后对焊接接头进行X射线衍射应力测试,应力测试点分布如图2所示.

    图  2  残余应力测试点分布(mm)
    Figure  2.  Distribution of the points for residual stress test (mm)

    在X射线衍射应力测试过程中,从靶材激发出的X射线通过准直器后,输出平行X射线束照射在待测材料表面,准直器直径的大小决定了被X射线照射区域的面积,进而决定了能够发生衍射的晶粒数目,对不同$\psi $角处衍射X射线的强度和半高宽(full width at half maximum,FWHM)进行统计,结果如图3所示.

    图  3  不同直径的准直器下衍射线强度及半高宽分布
    Figure  3.  Intensity and FWHM of diffraction profile under aperture with different diameters. (a) distribution of diffraction intensity; (b) distribution of FWHM

    图3表明随着准直器直径的增加,在各$\psi $角处X射线衍射强度增大,在$0< {\sin ^2}\psi < 0.3$范围内,衍射X射线的半高宽随着${\sin ^2}\psi $的增大而快速减小,而在$0.3<{\sin ^2}\psi < 0.6$范围内,衍射线半高宽随着${\sin ^2}\psi $的变化而小幅震荡,这表明随着准直器直径的增加,参与衍射的晶粒数目增加. 但是,当晶粒的择优取向较弱时,衍射晶粒群的平均微观应变依然不均匀. 而当晶粒的择优取向较强时,衍射晶粒群的平均微观应变的不均匀程度降低.

    对1号等强梁的P点采用应变片测试应力的结果为79.2 MPa. 对2号等强梁的P点采用X射线测试以后,采用公式(1)计算P点处的应力值.

    $$\sigma = \left[ { - \frac{1}{2} \cdot \frac{{\text{π}} }{{180}} \cdot {\rm{cot}}{\theta _0}\frac{E}{{\left( {1 + \varepsilon } \right)}}} \right]\frac{{\partial 2{\theta _\psi }}}{{\partial {\rm{si}}{{\rm{n}}^2}\psi }}$$ (1)

    式中:2θ0为Al(311)晶面无应力时的衍射角;2θψ为衍射晶面的法线位于ψ角处时测得的衍射角[18].Eε为其弹性模量和泊松比,取值分别为2θ0 = 139.31°,E = 69 GPa,ε = 0.35. 由于测试应力值仅与不同ψ角处测得的2θΨ相对于sin2ψ的变化率有关,与sin2ψ的具体值无关. 而在$0 < {\sin ^2}\psi < 0.3$$0.3 < {\sin ^2}\psi < 0.6$两个区间内参与X射线衍射的晶粒数目和平均微观应变的均匀性差异较大,因此分别采用这两个区间内测试得到的衍射角计算应力,结果如图4所示.

    图  4  准直器直径对应力测试结果的影响
    Figure  4.  Influence of aperture diameter on stress measurement results

    随着准直器直径的增加,X射线应力测试的精度提高. 在$0 <{\sin ^2}\psi < 0.3$范围内,由于晶体择优取向较弱,参与X射线衍射的晶粒数目较少,尽管增加准直器直径,其应力测试的精度依然较低.

    通过增加准直器直径可增加参与衍射的晶粒数目,但是若过分增加准直器直径,则测试区域内应力梯度的影响将增大,同时X射线束的发散度也增大,这些都将增加测试误差. 因此B组试验考虑在不改变准直器直径的条件下增加摇摆角. 随着摇摆角的增大,各ψ角处衍射峰半高宽的变化如图5所示.

    图  5  不同摇摆角下衍射线半高宽
    Figure  5.  FWHM of diffraction profile under different oscillation angles

    $0 < {\sin ^2}\psi < 0.3$范围内,衍射峰半高宽随着sin2ψ的增大而快速减小,并且摇摆角的增大并没有明显改变半高宽随sin2ψ的变化趋势,这表明当晶体择优取向较弱时,参与X射线衍射的晶粒数目少,增加摇摆角并不会明显改善各$\psi $角处衍射晶粒群微观应变的均匀性. 而在$0.3 < {\sin ^2}\psi < 0.6$范围内,晶体的择优取向较强,随着摇摆角的增加,各$\psi $角处衍射晶粒群的微观应变趋于均匀化.

    为分析增大摇摆角时衍射晶粒群变化的本质,对材料晶粒群亚晶之间的取向差进行统计分析,分别标记出晶粒内部大于0.5°,1°,2°的小角度晶界,结果如图6所示.

    图  6  晶界分布图
    Figure  6.  Grain boundary distribution map. (a) grain boundaries with misorientation greater than 0.5°; (b) grain boundaries with misorientation greater than 1°; (c) grain boundaries with misorientation greater than 2°

    图6中黑色线条表示的晶界为大于10°的晶界,晶粒内部白色线条分别表示大于0.5°,1°,2°的小角度晶界. 对比三幅图可知晶粒内部大部分亚晶之间的取向差值小于1°,在一个晶粒内部,不同亚晶所受的应力不均匀,而在多个晶粒尺度范围内,晶粒内部所有的亚晶所受应力的总和趋于平衡[4, 6]. 因此当入射X射线摇摆角从0°增加到1°时,参与衍射的亚晶数目明显增加,使衍射晶粒群的微观应变趋于均匀化. 而当摇摆角从1°继续增加到2°时,参与衍射的亚晶数目已不再明显增加,因此这两种条件下衍射晶粒群微观应变的均匀性差异较小.

    $0 < {\sin ^2}\psi < 0.3$$0.3 < {\sin ^2}\psi < 0.6$两个区间内,随着摇摆角的增加,应力测试结果如图7所示. 结果表明当摇摆角从0°增加到1°时,X射线应力测试精度明显提高,且在晶粒择优取向较强的取向范围内应力测试精度较高.

    图  7  摇摆角对应力测试结果的影响
    Figure  7.  Influence of oscillation angles on stress measurement results

    以上测试结果表明,增加摇摆角能够使各$\psi $角处衍射晶粒群的微观应变趋于均匀化,这有利于提高X射线法应力测试的精度.

    由以上分析,使用4 mm准直器、1°摇摆角,在$0.3 < {\sin ^2}\psi < 0.6$测试区间内对焊接接头残余应力进行测试,测试结果如图8所示.

    图  8  焊接残余应力分布
    Figure  8.  Distribution of welding residual stress. (a) distribution of σx along the x direction; (b) distribution of σy along the x direction; (c) distribution of σx along the y direction; (d) distribution of σy along the y direction

    (1) 增加准直器直径可以增加各个$\psi $角处衍射晶粒的数目,提高X射线衍射强度,但对各个$\psi $角处衍射晶粒群微观应变的均匀性影响较小,因此不能明显提高应力测试精度.

    (2) 在0° ~ 1°范围内增加摇摆角可使小角度晶界附近的亚晶都参与衍射,使各个$\psi $角处衍射晶粒群微观应变趋于均匀,应力测试精度明显提高.

    (3) 衍射晶粒群微观应变的均匀性与晶粒择优取向的强弱有关,晶粒择优取向越强,衍射晶粒群微观应变越均匀,应力测试精度越高.

  • 图  1   3种焊丝K465合金接头宏观形貌

    Figure  1.   Macrostructures of K465 alloy welded by three kinds of welding wires. (a) overall morphology of the joint obtained by HS-1 welding wire; (b) X-ray detection film of the welding zone of the joint of K465 alloy welded by HS-1 welding wire; (c) overall morphology of the joint obtained by HS-2 welding wire; (d) X-ray detection film of the welding zone of the joint of K465 alloy welded by HS-2 welding wire; (e) overall morphology of the joint obtained by HS-3 welding wire; (f) X-ray detection film of the welding zone of the joint of K465 alloy welded by HS-3 welding wire

    图  2   K465/HS-1接头微观组织

    Figure  2.   Microstructures of joint of K465 alloy welded by HS-1 welding wire. (a) epitaxial growth of welding microstructure; (b) competitive growth of welding microstructure; (c) local amplification diagram of cracks; (d) TEM bright field image of MC carbide and corresponding diffraction spectrum

    图  3   K465/HS-2接头微观组织

    Figure  3.   Microstructures of joint of K465 alloy welded by HS-2 welding wire. (a) welding cracks morphology; (b) microstructure of fusion zone; (c) microstructure of carbides; (d) TEM bright field image of carbides

    图  4   K465/HS-3接头微观组织

    Figure  4.   Microstructures of joint of K465 alloy welded by HS-3 welding wire. (a) welding cracks morphology; (b) epitaxial growth of welding microstructure; (c) microstructure of fusion zone; (d) TEM bright field image of carbides

    图  5   基于3种焊丝成分的焊缝凝固Thermo-calc模拟

    Figure  5.   Thermo-calc simulations of weld solidification based on three kinds of welding wire composition. (a) HS-1; (b) HS-2; (c) HS-3

    图  6   K465/HS-1接头焊缝区界面的EPMA结果

    Figure  6.   EPMA results of the interface of the welding zone of K465 alloy welded by HS-1 welding wire. (a) SEM; (b) Co; (c) Cr; (d) Ni; (e) W; (f) Nb

    图  7   K465/HS-2接头焊缝区界面的EPMA结果

    Figure  7.   EPMA results of the interface of the welding zone of K465 alloy welded by HS-2 welding wire. (a) SEM; (b) Co; (c) Ni; (d) W; (e) Al; (f) Mo

    图  8   K465/HS-3接头焊缝区界面的EPMA结果

    Figure  8.   EPMA results of the interface of the welding zone of K465 alloy welded by HS-3 welding wire. (a) SEM; (b) Co; (c) Al; (d) Cr; (e) Ni; (f) Ti

    图  9   3种焊丝成分接头焊缝区界面EBSD结果

    Figure  9.   EBSD results of the interface of the welding zone of the joints with three kinds of welding wires. (a) IPF map of the interface of the welding zone of K465 alloy welded by HS-1 welding wire; (b) KAM map of the interface of the welding zone of K465 alloy welded by HS-1 welding wire; (c) IPF map of the interface of the welding zone of K465 alloy welded by HS-2 welding wire; (d) KAM map of the interface of the welding zone of K465 alloy welded by HS-2 welding wire; (e) IPF map of the interface of the welding zone of K465 alloy welded by HS-3 welding wire; (f) KAM map of the interface of the welding zone of K465 alloy welded by HS-3 welding wire

    图  10   3种焊丝接头焊缝区元素分配系数

    Figure  10.   Distribution coefficients K of fusion zone of the joints with three kinds of welding wires

    图  11   不同焊丝焊态及焊后热处理态接头显微硬度分布

    Figure  11.   Microhardness distribution of joints with different welding wires in as-welded and post-weld heat treatment state

    图  12   K465/HS-2接头拉伸断口形貌

    Figure  12.   Tensile fracture morphology of K465 alloy welded by HS-2 welding wire. (a) macrostructure; (b) microstructure

    图  13   接头室温拉伸断口形貌

    Figure  13.   Tensile fracture morphology of K465 alloy welded by HS-1 and HS-3 welding wires at room temperature. (a) macrostructure of HS-1 joint; (b) microstructure of HS-1 joint; (c) macrostructure of HS-3 joint; (d) microstructure of HS-3 joint

    图  14   接头900 ℃高温拉伸断口形貌

    Figure  14.   Tensile fracture morphology of K465 alloy welded by HS-1 and HS-3 welding wires at 900 ℃. (a) macrostructure of joint with HS-1 welding wire; (b) microstructure of joint with HS-1 welding wire; (c) macrostructure of joint with HS-3 welding wire; (d) microstructure of joint with HS-3 welding wire

    图  15   HS-3焊丝接头拉伸断口透射组织

    Figure  15.   Transmission microstructures of tensile fracture of joint with HS-3 welding wire. (a) room temperature; (b) 900 ℃

    表  1   K465合金的化学成分(质量分数,%)

    Table  1   Chemical compositions of K465 base metal alloy

    CrAlTiCoWNbNi
    8.5 ~ 9.55.1 ~ 6.02.0 ~ 2.99 ~ 10.59.5 ~ 110.8 ~ 1.2余量
    下载: 导出CSV

    表  2   设计焊丝成分 (质量分数,%)

    Table  2   Chemical compositions of welding wires

    焊丝CCrWMoNbAl + TiCoBNi
    HS-10.19 ~ 155 ~ 101 ~ 30.8 ~ 1.2810<0.01余量
    HS-20.19 ~ 155 ~ 101 ~ 30.8 ~ 1.245<0.01余量
    HS-30.19 ~ 155 ~ 101 ~ 30.8 ~ 1.2120<0.01余量
    下载: 导出CSV

    表  3   3种焊丝焊缝中枝晶干/枝晶间的元素含量及偏析系数(质量分数,%)

    Table  3   Element content and segregation coefficient of dendrite and interdendritic in the fusion zone of K465 alloy welded by three kinds of welding wires

    焊丝CrCoNiNbMoTiAlW
    HS-1枝晶干7.8110.9360.70.461.481.455.6611.13
    枝晶间8.7610.4461.490.771.762.166.358.51
    K0.89110.590.840.670.891.31
    HS-2枝晶干8.177.8466.380.771.980.675.917.97
    枝晶间9.816.9067.151.832.770.936.614.59
    K0.831.1410.420.720.720.891.74
    HS-3枝晶干2.4645.4627.700.823.330.124.1010.64
    枝晶间2.2346.7426.551.043.470.144.1410.01
    K1.10.971.040.790.960.8211.06
    下载: 导出CSV

    表  4   母材及不同焊丝所得接头的拉伸性能

    Table  4   Tensile properties of K465 alloy and K465 alloy welded by HS-1 and HS-3 welding wires at room temperature and 900 ℃

    材料 断裂位置 温度
    T/℃
    抗拉强度
    Rm/MPa
    断后伸长率
    A(%)
    K465母材 室温 974.5 5.3%
    K465母材 900 ℃ 826 6.6%
    HS-1接头 焊缝区 室温 563 4.5%
    HS-1接头 焊缝区 900 ℃ 363 2.2%
    HS-3接头 热影响区 室温 822 5%
    HS-3接头 热影响区 900 ℃ 448 8.5%
    下载: 导出CSV
  • [1]

    Sun S, Sheng N, Fan S, et al. Abnormal feather-like grains induced by the thin-wall effect in a polycrystalline nickel-based superalloy[J]. Journal of Alloys and Compounds, 2022, 901: 163581. doi: 10.1016/j.jallcom.2021.163581

    [2]

    Yuan X F, Song J X, Zheng Y R, et al. Quantitative microstructural evolution and corresponding stress rupture property of K465 superalloy[J]. Materials Science and Engineering: A, 2016, 651: 734 − 744. doi: 10.1016/j.msea.2015.11.026

    [3]

    Yang J X, Zheng Q, Sun X F, et al. Topologically close-packed phase precipitation in a nickel-base superalloy during thermal exposure[J]. Materials Science and Engineering A, 2007, 465(1-2): 100 − 108. doi: 10.1016/j.msea.2007.01.152

    [4]

    Chowdhury T S, Mohsin F T, Tonni M M, et al. A critical review on gas turbine cooling performance and failure analysis of turbine blades[J]. International Journal of Thermofluids, 2023, 18: 100329. doi: 10.1016/j.ijft.2023.100329

    [5]

    Mourad A-H I, Almomani A, Ahmad Sheikh I, et al. Failure analysis of gas and wind turbine blades: A review[J]. Engineering Failure Analysis, 2023, 146: 107107. doi: 10.1016/j.engfailanal.2023.107107

    [6] 张杰, 王茂才, 翟玉春. 先进的燃气轮机叶片粉末冶金修复技术[J]. 材料导报, 2010, 24(5): 110 − 113.

    Zhang Jie, Wang Maocai, Zhai Yuchun. Advanced powder metallurgy repair technology for gas turbine blades[J]. Materials Reports, 2010, 24(5): 110 − 113.

    [7]

    Han K, Wang H, Shen L, et al. Analysis of cracks in the electron beam welded joint of K465 nickel-base superalloy[J]. Vacuum, 2018, 157: 21 − 30. doi: 10.1016/j.vacuum.2018.08.011

    [8]

    Li Q G, Lin X, Wang X H, et al. Research on the grain boundary liquation mechanism in heat affected zones of laser forming repaired K465 nickel-based superalloy[J]. Metals, 2016, 6(3): 64.

    [9] 郎振乾, 叶政, 杨健, 等. 单晶高温合金表面缺陷焊接修复的研究进展[J]. 材料研究学报, 2021, 35(3): 161 − 174.

    Lang Zhenqian, Ye Zheng, Yang Jian, et al. Research progress on welding repair of surface defects of single crystal superalloys[J]. Chinese Journal of Materials Research, 2021, 35(3): 161 − 174.

    [10] 王诗洋, 刘士伟, 侯星宇, 等. 焊丝成分对镍基高温合金TIG焊焊接性的影响[J]. 焊接学报, 2023, 44(3): 31 − 36. doi: 10.12073/j.hjxb.20220401001

    Wang Shiyang, Liu Shiwei, Hou Xingyu, et al. Effect of welding wire composition on weldability of nickel-based superalloy TIG welding[J]. Transactions of the China Welding Institution, 2023, 44(3): 31 − 36. doi: 10.12073/j.hjxb.20220401001

    [11]

    Ojo O A, Richards N L, Chaturvedi M C. Study of the fusion zone and heat-affected zone microstructures in tungsten inert gas-welded INCONEL 738LC superalloy[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37(2): 421 − 433. doi: 10.1007/s11661-006-0013-2

    [12]

    Österle W, Krause S, Moelders T, et al. Influence of heat treatment on microstructure and hot crack susceptibility of laser-drilled turbine blades made from René 80[J]. Materials Characterization, 2008, 59(11): 1564 − 1571. doi: 10.1016/j.matchar.2008.01.021

    [13]

    Xue J, Guo W, Yang J, et al. In-situ observation of microcrack initiation and damage nucleation modes on the HAZ of laser-welded DP1180 joint[J]. Journal of Materials Science & Technology, 2023, 148: 138-149.

    [14]

    Wen M, Sun Y, Yu J, et al. Amelioration of weld-crack resistance of the M951 superalloy by engineering grain boundaries[J]. Journal of Materials Science and Technology, 2021, 78: 260 − 267. doi: 10.1016/j.jmst.2020.10.069

    [15]

    Hu H, Zhao M, Rong L. Retarding the precipitation of η phase in Fe-Ni based alloy through grain boundary engineering[J]. Journal of Materials Science & Technology, 2020, 47: 152 − 161.

    [16]

    Chen Y, Zhang Q, Chen Z, et al. Study on the element segregation and Laves phase formation in the carbon nanotubes reinforced IN718 superalloy by laser cladding[J]. Powder Technology, 2019, 355: 163 − 171. doi: 10.1016/j.powtec.2019.07.063

    [17]

    Ojo O A, Richards N L, Vishwakarma K R. Heat-affected zone cracking in welded nickel superalloys, welding and joining of aerospace materials[M]. Woodhead Publishing, 2012: 142-177.

    [18]

    Hu Y L, Lin X, Yu X B, et al. Effect of Ti addition on cracking and microhardness of Inconel 625 during the laser solid forming processing[J]. Journal of Alloys and Compounds, 2017, 711: 267 − 277. doi: 10.1016/j.jallcom.2017.03.355

    [19]

    Zhou Changjie, Fan Xiaole, Zhu Lihua, et al. Transient liquid phase bonding of DD5 superalloy using a designed interlayer: microstructure and mechanical properties[J]. China Welding, 2024, 33(2): 1 − 10.

    [20]

    Chen S, Ye X X, Tsang D K L, et al. Welding solidification cracking susceptibility and behavior of a Ni-28 W-6Cr alloy[J]. Journal of Materials Science & Technology, 2019, 35(1): 29 − 35.

    [21]

    Liu C, Sun Y, Wen M, et al. Effect of Cr addition on microstructure and welding solidification cracking susceptibility of Co-Al-W based superalloys[J]. Journal of Manufacturing Processes, 2020, 56: 820 − 829. doi: 10.1016/j.jmapro.2020.03.049

    [22] 孙元, 刘纪德, 刘忠明, 等. 钴基钎料钎焊DD5单晶高温合金的接头微观组织演变与力学性能研究[J]. 金属学报, 2013, 49(12): 1581 − 1589. doi: 10.3724/SP.J.1037.2013.00406

    Sun Yuan, Liu Jide, Liu Zhongming, et al. Study on microstructure evolution and mechanical properties of DD5 single crystal superalloy joints brazed with cobalt-based brazing filler metal[J]. Acta Metallurgica Sinica, 2013, 49(12): 1581 − 1589. doi: 10.3724/SP.J.1037.2013.00406

  • 期刊类型引用(0)

    其他类型引用(2)

图(15)  /  表(4)
计量
  • 文章访问数:  160
  • HTML全文浏览量:  12
  • PDF下载量:  67
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-09-27
  • 网络出版日期:  2024-06-14
  • 刊出日期:  2024-09-24

目录

/

返回文章
返回