高级检索

电阻缝焊制备铁基非晶涂层温度场数值模拟

王文琴, 徐永东, 韩召先, 张超华, 贾剑平, 王非凡, 李玉龙

王文琴, 徐永东, 韩召先, 张超华, 贾剑平, 王非凡, 李玉龙. 电阻缝焊制备铁基非晶涂层温度场数值模拟[J]. 焊接学报, 2024, 45(8): 24-32. DOI: 10.12073/j.hjxb.20230910001
引用本文: 王文琴, 徐永东, 韩召先, 张超华, 贾剑平, 王非凡, 李玉龙. 电阻缝焊制备铁基非晶涂层温度场数值模拟[J]. 焊接学报, 2024, 45(8): 24-32. DOI: 10.12073/j.hjxb.20230910001
WANG Wenqin, XU Yongdong, HAN Zhaoxian, ZHANG Chaohua, JIA Jianping, WANG Feifan, LI Yulong. Numerical simulation of the temperature field in resistance seam welding for fabricating Fe-based amorphous coatings[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 24-32. DOI: 10.12073/j.hjxb.20230910001
Citation: WANG Wenqin, XU Yongdong, HAN Zhaoxian, ZHANG Chaohua, JIA Jianping, WANG Feifan, LI Yulong. Numerical simulation of the temperature field in resistance seam welding for fabricating Fe-based amorphous coatings[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 24-32. DOI: 10.12073/j.hjxb.20230910001

电阻缝焊制备铁基非晶涂层温度场数值模拟

基金项目: 国家自然科学基金资助项目 (52205375);江西省基金项目 (20232BAB204049,20224BAB214010,jxsq2019201118).
详细信息
    作者简介:

    王文琴, 博士,副教授;主要从事焊接及表面改性研究;Email: wangwenqin@ncu.edu.cn

    通讯作者:

    张超华,博士,讲师;Email: chhzhang@ncu.edu.cn.

  • 中图分类号: TG 402

Numerical simulation of the temperature field in resistance seam welding for fabricating Fe-based amorphous coatings

  • 摘要:

    通过电阻缝焊成功在SUS304上制备出铁基非晶涂层,并测量制备过程的温度热循环. 基于Comsol采用电-热耦合的有限元方法,重点分析制备过程电流密度及温度场的动态分布及换热机理,对比温度场的试验和模拟结果可知,相同位置模拟与试验的温度热循环曲线误差很小,验证了电-热耦合方法计算电阻缝焊制备制备铁基非晶涂层温度场的可靠性. 结果表明,高电流密度区域主要存在于电极轮正下方粉末层底部的某些点位、以电极轮与粉末层接触面左右两端为中心的邻近区域, 铁基非晶涂层制备过程的温度场不仅与电流密度分布相关,还受电极轮移动及涂层与附近区域的热交换所影响,使稳定时,在纵向温度几乎没有变化,在x-z截面呈左边高、右边次之、中间低的“凹”字形分布,相对应的热循环曲线则呈“升-降-升”的整体升温趋势.

    Abstract:

    A Fe-based amorphous coating was successfully fabricated on SUS304 using resistance seam welding (RSW), and the thermal cycling history during the welding process was measured. Based on the Comsol, the electric-thermal coupling finite element method (FEM) was adopted to analyze the dynamic distribution of current density and temperature field during the fabricating process, as well as the heat exchange mechanism. By comparing the experimental and simulated results of the temperature field, it can be concluded that the error in the temperature thermal cycle curve between the simulation and experiment at the same position is very small, which verifies the reliability of the electric-thermal coupling FEM in calculating the temperature field of the Fe-based amorphous coating fabricated by RSW. The simulation results indicate that the high current density area mainly exists at certain points at the bottom of the powder layer directly under the electrode wheel, and the adjacent areas centered on the left and right ends of the contact surface between the electrode wheel and the powder layer. The temperature field during the fabricating process of Fe-based amorphous coatings is not only related to the distribution of current density but also influenced by the movement of the electrode wheel and the heat exchange between the coating and the surrounding region. When the fabrication process is stable, the peak temperature remains almost unchanged in the longitudinal direction. In the x-z cross-section, there is a ‘concave’ distribution with higher temperature on the left side, lower temperature in the middle, and intermediate temperature on the right side. The corresponding thermal cycle curve shows an overall increasing trend of ‘rise-fall-rise’.

  • 鉴于非晶合金独特的原子结构,其长程无序,短程有序的排列赋予了非晶合金高强度、高硬度、高耐磨性和优异的耐腐蚀性[1-4],具有很大的应用前景[5-6]. 其中,铁基非晶因价格低廉,资源丰富,成为更具吸引力的选择[7-11],然而,非晶材料的制备受限于常规条件下难以达到的极高冷却速率,从而限制了其尺寸[12-13]. 为了克服非晶合金的室温脆性和尺寸限制问题,涂层技术被提出并成功运用,不仅解决了非晶合金的脆性断裂问题,还突破了尺寸限制[14]. 通过将铁基非晶合金以涂层形式附着于基体表面,可以充分发挥其优异性能,并显著提升基体材料的表面性能[15],因此,在航空航天、船舶制造等领域拥有更广泛的应用[16-18].

    常见非晶涂层的制备方法有热喷涂和激光熔覆等,然而无论是热喷涂还是激光熔覆,由于加热特点的内在限制[19-20],都不可避免的容易产生相应缺陷[21-22]. 热喷涂制备的铁基非晶涂层中存在着孔隙和氧化物层等结构缺陷,Guo等人[23]在高速空气燃料(high velocity air fuel,HVAF)和高速氧气燃料(high velocity oxygen fuel,HVOF)制备的铁基非晶合金涂层中发现,涂层中氧化物含量越高,涂层的耐腐蚀性就越差,认为是粒子间氧化物的存在给溶液提供了通道,从而使得涂层耐腐蚀性变差;Liu等人[24]在低压等离子喷涂(low pressure plasma spraying,LPPS)制备的铁基非晶涂层的耐腐蚀性的研究中发现,腐蚀常发生在熔化不完全的粒子附近,且孔隙较为显著. 激光熔覆过程中不仅容易产生裂纹,同时高能密度的激光束易造成基体的稀释而改变非晶组分,影响非晶成形能力,Farmer等人[25]对激光熔覆制备铁基非晶涂层的冲击韧性进行研究,指出由于存在严重的界面脱离和表面裂纹,使涂层和基体结合强度不够,导致较差的冲击韧性;胡立威等人[26]在纯Ti基板上利用激光熔化沉积技术制备了Zr-Cu-Ni-Al单道熔覆涂层试样,在探究激光功率对熔覆层显微组织与性能的影响时发现,基体Ti对熔覆层的稀释作用是涂层发生晶化的主要原因.

    电阻缝焊是通过施加压力及电压,以产生于被焊焊件之间的电阻热为热源的焊接方式,具有可控性强、升温快的特点[27-28].以电阻缝焊制备非晶涂层,电流流经非晶粉末,由于接触电阻的存在,大量电阻热直接产生于粉末间的接触面上,非晶粉末在电阻热产生的高温及压力下被粘合在一起后,电阻减小,电阻热降低,通过调控热输入能够避免粉末中心区非晶结构的晶化[29],且在孔隙和裂纹存在的地方,电阻会异常大以至于附近会被再熔化和再凝固,从而实现孔隙和裂纹的自愈合. 与电弧熔覆制备非晶涂层不同,其并没有很高的热输入,故可以有效增加非晶率及减少裂纹应力等缺陷,且热量集中,更适用于小零部件. 基于这些,以焦耳热为热源的电阻缝焊十分适合用于非晶涂层的制备,所以深入研究制备过程电流密度及温度场的分布规律及产热机理十分重要,对电阻制备工艺参数的调节、材料的选择等也都具有重要的指导意义,虽然国内外在电阻缝焊焊接数值模拟方面做了大量的工作[30-33],但电阻缝焊制备涂层方面的研究尚未见报道.

    试验通过电阻缝焊在SUS304上熔覆制备铁基非晶涂层,采用热电偶及高速摄像机对其温度场进行测量及观察,同时,基于有限元软件Comsol,通过电-热耦合的有限元方法来计算分析制备过程电流密度及温度场的动态分布,并对其结果进行讨论分析,得出其换热机理,为电阻缝焊制备涂层温度场提供参考意义. 为了验证数值模拟的准确性,根据模拟所使用的焊接工艺参数,进行了相关的焊接试验,对模拟温度进行了验证.

    试验采用电阻缝焊设备在SUS304基体上制备铁基非晶涂层,如图1所示. 制备材料为铁基非晶粉末Fe41.5Co7Cr15Mo14C15B6Y1.5(原子分数,%),SUS304尺寸为150 mm × 30 mm × 2 mm,化学成分见表1. 中频逆变交流电阻缝焊设备主要工作部分由铜电极工作台和铜电极滚轮组成,工作台与滚轮在自主编程的控制下可以实现精确自动化移动. 试验焊接参数为焊接电流4 kA、焊接速度4 mm/s、电极压力0.3 MPa,制备过程中,采用K型热电偶测量涂层边缘温度历史,且全程采用高速摄像机Phantom VEO-710L加微距镜头NikonAF-S进行拍摄.

    图  1  制备示意图
    Figure  1.  Diagram of fabrication
    表  1  SUS304的化学成分(质量分数,%)
    Table  1.  Chemical compositions of SUS 304
    CrNiMnSiCSFe
    19.08.5<2.0≤1.0≤0.03≤0.08余量
    下载: 导出CSV 
    | 显示表格

    通过Comsol多物理仿真软件采用电-热顺序耦合方式,对电阻缝焊制备铁基非晶涂层过程中的电流场及温度场进行模拟. 首先(基于电极轮、基板和涂层的几何尺寸)进行几何三维建模;其次对相应的域进行材料属性添加;再根据试验参数及实际情况设置好正确的边界条件并划分网格;随后,将电流及固体传热以电磁热(焦耳热)的方式进行耦合,设置好计算时间及时间步长大小进行最终计算,最后获得所需结果.

    AC/DC模块下选择电流接口,电流守恒方程通过欧姆定律求得,即

    $$ \nabla \cdot {{J}} = {Q_{\mathrm{j}}} $$ (1)

    式中:$Q_{\mathrm{j}} $为外部电源. 假设电势场是准静态的,则式(1)又可以写成

    $$ \nabla \cdot J = 0 $$ (2)

    其中$J$计算式为

    $$ J = \sigma E + {J_{\mathrm{e}}} $$ (3)

    式中:${J_{\mathrm{e}}}$是外部的电流密度,因没有电流损失,被假定为 0;电场$E$是电势的函数

    $$ E = - \nabla U $$ (4)

    因此式(2)可表示为

    $$ \nabla \cdot J = \nabla \cdot \left( {\sigma E} \right) = \nabla \cdot \left( { - \sigma \nabla U} \right) = 0 $$ (5)

    式中:$\nabla $为梯度算子;$J$为电流密度;$E$为电场强度;$U$为电势;$\sigma $为电导率.

    电阻缝焊制备过程焦耳热通过热传导、热辐射传递到其他区域,传热方程为

    $$ \rho {C_{\mathrm{p}}}\left( {\frac{{\partial T}}{{\partial t}} + {u_{{\mathrm{trans}}}} \cdot \nabla T} \right) + \nabla \cdot \left( {q + {q_{\mathrm{r}}}} \right) = - \alpha T:\frac{{{\mathrm{d}}S}}{{{\mathrm{d}}t}} + Q $$ (6)

    式中:$\rho $为密度;${C_{\mathrm{p}}}$为恒压热容;${u_{{\mathrm{trans}}}}$为平移运动的速度矢量;$q$为传导的热通量;${q_{\mathrm{r}}}$是辐射的热通量;$\alpha $为热膨胀系数;$S$为第二皮奥拉-基尔霍夫应力张量;$Q$为热源;T为温度.

    电阻缝焊制备系统通过热对流与热辐射向周围环境传热,对流热通量方程为

    $$ - n \cdot q = h\left( {{T_{{\mathrm{ext}}}} - T} \right) $$ (7)

    式中:$h$是传热系数;${T_{{\mathrm{ext}}}}$为远离边界的外部流体的温度.

    边界到环境辐射过程中,从表面到环境辐射的净热通量为

    $$ - n \cdot q = \varepsilon \sigma_\tau \left( {{T^4}_{{\mathrm{amb}}} - {T^4}} \right) $$ (8)

    式中:$\varepsilon $为表面发射率;$\sigma_\tau $为Stefan-Boltzmann常数;${T_{{\mathrm{amb}}}}$为环境温度

    电磁加热多物理场耦合将源项${Q_{\mathrm{e}}}$相加,以解释热方程中的电阻加热,即

    $$ \rho {C_{\mathrm{p}}}\frac{{\partial T}}{{\partial t}} - \nabla \cdot \left( {k\nabla T} \right) = {Q_{\mathrm{e}}} $$ (9)

    电流引起的电阻加热(焦耳热)为

    $$ {Q_{\mathrm{e}}} = J \cdot E $$ (10)

    式中:k为导热系数;${Q_{\mathrm{e}}}$为电磁表面损耗映射为模型传热部分边界上的热源.

    为了模型能够更好收敛及减少计算量,对模型进行了3点简化,①模型的物理场接口包括电流、固体传热、及动网格,未考虑固体力学对电热计算过程的影响;②整个制备过程电极轮的旋转角度极小,如图2(a)所示仅为19.10°,再加上铜电极的散热性好,故对原本电极轮的运动(旋转加平移)进行简化(忽略旋转);③在电极轮底端进行域分割,创建与粉末层接触的面,代替实际情况见图2(b).

    图  2  简化示意图
    Figure  2.  Simplified schematic diagram. (a) comparison of electrode wheel and powder layer sizes; (b) schematic of the lower end small plane of the electrode wheel

    简化后的几何模型及网格划分如图3所示,可以看出模型从上到下依次是铜电极轮、粉末层、SUS304基板以及铜基座. 对粉末层、SUS304基板、铜基座均采用映射网格,电极轮则采用自由四面体网格,由于电流在接触面传递,故对接触面区域网格进行加密处理,模型网格总数7148,其中四面体网格3868,六面体网格3280.

    图  3  有限元网格模型
    Figure  3.  Finite element mesh model

    SUS304及电极轮的各项属性,如图4所示. 非晶粉末用多孔材料表征,在电极轮压力下,孔隙率设定为0.25,其属性见表2,所有材料介电常数均为1.

    图  4  材料性能参数
    Figure  4.  Material performance parameters. (a) electrode wheel CuCrZr; (b) 304 stainless steel
    表  2  非晶粉末材料参数
    Table  2.  Parameters of amorphous powder materials
    导热系数
    k/(W·m−1·K−1)
    密度
    ρ/(kg·m−3)
    恒压热容
    Cp/(J·kg−1·K−1)
    电导率
    σ/(105 S·m−1)
    20 5900 335 1
    下载: 导出CSV 
    | 显示表格

    动网格场负责电极轮的平动,通过设置指定变形、变形域及固定边界节点以0.004 m/s的恒定速度沿x轴正方向平移,电极轮初始位置为x = 15 mm. 在电流场物理场中添加输入电流的终端、接地及4个电接触对节点,并以直流电代替中频交流电,默认初始温度为293.15 K, 在固体传热中分别添加热通量、表面对环境辐射以及热接触节点若干.

    图5为稳定时,模型整体及xOz截面、yOz截面电流密度分布. 为了方便总结及讨论电流密度的分布,现将粉末层从左至右,依次标记为A区域、B区域、C区域见图5(b),很明显,电流密度高的区域主要存在以电极轮与粉末层接触面左右两端为中心的粉末层、电极轮正下方粉末层底部的某些点位见图5(c)和图5(d),这是由于A和C区域的尖端效应及B区底面较高粗糙度导致的.

    图  5  电流密度分布
    Figure  5.  Current density distribution plots. (a) transparent three-dimensional plot at 4 s; (b) enlarged transparent three-dimensional plot at 4 s; (c) xOz cross-section at 4 s; (d) yOz cross-section at 4 s

    为了验证模拟结果的可靠性,采用K型热电偶尽量取距涂层更近基板上的点进行测温,最终选取x = 28.8 mm距涂层0.4 mm基板上的点进行测量,点位置及对比结果如图6所示,并在模型上取相同位置的点绘制模拟的温度曲线.

    图  6  试验值与模拟值对比
    Figure  6.  Comparison between calculation and experiment

    试验与模拟温度曲线的起始值相同,由模拟时环境温度设置所造成. 热循环曲线在4.72 s达到温度最大值为699.07 K,模拟热循环曲线在4.73 s时温度最高为685.46 K,虽试验温升速率高于模拟的温升速率,但最高温度之间仅有1.95%的误差,达最高温时间较为准确,且有限元计算结果受网格划分、模型简化等因素影响,相较而言模拟与试验结果较为符合,在12.5 s结束测试时,测得温度为429.77 K,模拟计算温度为434.51 K,误差仅为1.10%,也与试验结果较为符合,这些均说明模拟结果是可靠的.

    图7为不同时间下涂层的透明体温度分布,粉末层在y轴方向上的温度场几乎没有变化(粉末层外壁热绝缘). 为了了解其y轴方向的温度准确分布,选取x = 25 mm从涂层中心沿y轴(纵向)到边缘的3个点依次来绘制其温度热循环曲线,如图8所示. 可以明显看出3个位置的温度变化大体相同,仅在曲线A区域边缘点温度稍高一点,因此,y轴温度场变化甚小,对粉末层温度场研究的关键在xOz截面,后续以粉末层y轴方向中部的xOz截面为主要研究对象.

    图  7  不同时刻透明体温度分布
    Figure  7.  Temperature distribution of transparent objects at different times. (a) t = 0.05 s;(b) t = 2 s;(c) t = 6 s;(d) t = 12 s
    图  8  纵向不同点温度热循环曲线
    Figure  8.  Thermal cycle curve longitudinal temperature at different points

    图9为熔覆稳定时xOz截面温度的分布情况,可以发现温度分布与电流密度相关,高温区主要存在于A区、C区及B区底部,且A区温度大于C区. 首先,电流密度高的区域产生的焦耳热也多,即A区、C区及B区底部,其次,传热对温度的分布亦起着重要作用,3区域下部都与SUS304基板接触,散热环境相似. 而在上部,B区与导热性优良的大尺寸铜电极轮接触,热量散失较大,故在电流密度及铜电极的共同作用下,B区上部温度低于下部,且达到熔覆稳定时经过了较多的时间尺度,电极轮位移了一段距离,产热区域也随着电极轮的运动而变化,前一时刻的B区、C区分别转化为后一时刻的A区、B区. A区有着较好的温度基础,且A区左侧为上一时刻的A区,温度梯度较小,散热条件较差. C区右侧为电流密度较小的区域,温度较低,温度梯度较大,因此在稳定阶段C区温度低于A区,最终A区正是在这种转换模式下不断形成温度的累积,温度增速较B区、C区大,稳定时,温度最终呈左边高右边次之中间低的“凹”字形分布,此外,截面最大温度值在1900 K内小幅度波动.

    图  9  稳定时xOz截面模拟及试验温度分布
    Figure  9.  Steady-state xOz section simulated and experimental temperature distribution plot. (a) t = 6.8 s; (b) t = 9.4 s; (c) t = 12 s; (d) stable in the early stages (0%); (e) stable in the early stages (50%); (f) stable in the early stages (100%); (g) stable in the later stages (0%); (h) stable in the later stages (50%); (i) stable in the later stages (100%)

    图9(d)~图9(i)为高速摄像机所拍摄的稳定前期及后期实况. 不管前期还是后期随着系统与环境的热交换达到动态平衡,即达到稳定,高温区呈白色长带状,并存在于接触区左侧,对比于模拟结果,实际制备过程高温区的分布与模拟结果较为符合.

    选取涂层中心横向x = 35,45,55 mm的3个点(图上对应点4 ~ 点6)绘制其温度热循环曲线如图10所示,可以发现,与其他方法的温度热循环曲线不尽相同. 曲线升温分为两段,其中间还有段降温过程,直到第二次升温结束后,才开始正式冷却,整个过程与制备稳定时温度的“凹”字形分布相对应. 一二次升温分别对应着C区、A区域,且A区域温度高于C区域,中间的降温过程则对应着B区域,B区域本身温度低于C区域,且热的良导体电极轮与涂层是平面接触,大大提高了传热效率.

    图  10  横向不同点温度热循环曲线
    Figure  10.  Thermal cycle curve of transverse temperature at different points

    根据热力学第一定律${\text{d}}U = \delta Q + \delta W$,体系内能的增量等于体系吸收的热量加上环境对体系作的功,即某一区域内的内能变化量由外界作的功和热量变化共同决定,换热机理如图11所示.

    图  11  换热机理
    Figure  11.  Heat exchange mechanism

    电阻缝焊制备过程中,外界环境对区域作功主要是焦耳热的形式,即电能转化为内能,电流密度在电极轮正下方粉末层底部,及铜电极轮与粉末层接触面两端邻近区域达到最大见图5(b)和图5(c),即A区、B区、C区,因此,这些区域也是产热最高的区域, 热量的变化主要是和其他区域之间的热交换,热交换包括热对流、热辐射、热传递. B区上部温度之所以低于其下部,除电流密度影响外也在于其与导热性优异的电极轮接触,使得被热传递带走了绝大部分的热量,而A区则因为电极轮运动导致的热积累而成为温度最高的区域.

    (1)制备过程中,电流密度高的区域主要存在于以电极轮与粉末层接触面左右两端为中心的粉末层、电极轮正下方粉末层底部的某些点位.

    (2)相同位置模拟与试验的焊接循环曲线误差很小,说明温度场是可靠的.

    (3)温度分布与电流密度分布相关,温度场在y轴方向几乎无变化,稳定时,xOz截面温度最终呈左边高右边次之中间低的“凹”字形分布,与之对应的焊接循环曲线则表现为“升-降-升”的整体升温趋势.

    (4)文中热输入由焦耳热提供,输出形式为热对流、热辐射及热传递,影响温度场分布的因素有3个,即电流导致的焦耳热、电极轮导致的热传导及电极轮运动导致的热积累.

  • 图  1   制备示意图

    Figure  1.   Diagram of fabrication

    图  2   简化示意图

    Figure  2.   Simplified schematic diagram. (a) comparison of electrode wheel and powder layer sizes; (b) schematic of the lower end small plane of the electrode wheel

    图  3   有限元网格模型

    Figure  3.   Finite element mesh model

    图  4   材料性能参数

    Figure  4.   Material performance parameters. (a) electrode wheel CuCrZr; (b) 304 stainless steel

    图  5   电流密度分布

    Figure  5.   Current density distribution plots. (a) transparent three-dimensional plot at 4 s; (b) enlarged transparent three-dimensional plot at 4 s; (c) xOz cross-section at 4 s; (d) yOz cross-section at 4 s

    图  6   试验值与模拟值对比

    Figure  6.   Comparison between calculation and experiment

    图  7   不同时刻透明体温度分布

    Figure  7.   Temperature distribution of transparent objects at different times. (a) t = 0.05 s;(b) t = 2 s;(c) t = 6 s;(d) t = 12 s

    图  8   纵向不同点温度热循环曲线

    Figure  8.   Thermal cycle curve longitudinal temperature at different points

    图  9   稳定时xOz截面模拟及试验温度分布

    Figure  9.   Steady-state xOz section simulated and experimental temperature distribution plot. (a) t = 6.8 s; (b) t = 9.4 s; (c) t = 12 s; (d) stable in the early stages (0%); (e) stable in the early stages (50%); (f) stable in the early stages (100%); (g) stable in the later stages (0%); (h) stable in the later stages (50%); (i) stable in the later stages (100%)

    图  10   横向不同点温度热循环曲线

    Figure  10.   Thermal cycle curve of transverse temperature at different points

    图  11   换热机理

    Figure  11.   Heat exchange mechanism

    表  1   SUS304的化学成分(质量分数,%)

    Table  1   Chemical compositions of SUS 304

    CrNiMnSiCSFe
    19.08.5<2.0≤1.0≤0.03≤0.08余量
    下载: 导出CSV

    表  2   非晶粉末材料参数

    Table  2   Parameters of amorphous powder materials

    导热系数
    k/(W·m−1·K−1)
    密度
    ρ/(kg·m−3)
    恒压热容
    Cp/(J·kg−1·K−1)
    电导率
    σ/(105 S·m−1)
    20 5900 335 1
    下载: 导出CSV
  • [1]

    Lan S, Zhu L, Wu Z D, et al. A medium-range structure motif linking amorphous and crystalline states[J]. Nature Materials, 2021, 20(10): 1347 − 1352. doi: 10.1038/s41563-021-01011-5

    [2]

    Ge Jiacheng, Luo Peng, Wu Zhenduo, et al. Correlations of multiscale structural evolution and homogeneous flows in metallic glass ribbons[J]. Materials Research Letters, 2023, 11(7): 547 − 555. doi: 10.1080/21663831.2023.2187264

    [3]

    Di S Y, Wang Q Q, Yang Y Y, et al. Efficient rejuvenation of heterogeneous {[(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4}99.9Cu0.1 bulk metallic glass upon cryogenic cycling treatment[J]. Journal of Materials Science & Technology, 2022, 97: 20 − 28.

    [4]

    Li X S, Xue Z Y, Hou X B, et al. FeCo-based amorphous alloys with high ferromagnetic elements and large annealing processing window[J]. Intermetallics, 2021, 131: 107087. doi: 10.1016/j.intermet.2021.107087

    [5]

    Theisen E A. Recent advances and remaining challenges in manufacturing of amorphous and nanocrystalline alloys[J]. IEEE Transactions on Magnetics, 2022, 58(8): 2001207.

    [6]

    Qi Xiaojing, You Junhua, Zhou Jifeng, et al. A review of Fe-based amorphous and nanocrystalline alloys: preparations, applications, and effects of alloying elements[J]. Physica Status Solidi A, 2023, 220(14): 2300079 (1 − 13). doi: 10.1002/pssa.202300079

    [7]

    Meghwal A, Pinches S, King H J, et al. Fe-based amorphous coating for high-temperature wear, marine and low pH environments[J]. Materialia, 2022, 25: 101549. doi: 10.1016/j.mtla.2022.101549

    [8]

    Lassoued A, Li J F. Preparation, characterization and application of Fe72Cu1Co5Si9B13 metallic glass catalyst in degradation of azo dyes[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(16): 21727 − 21741. doi: 10.1007/s10854-021-06693-w

    [9]

    Liang S, Wang X Q, Zhang W C, et al. Selective laser melting manufactured porous Fe-based metallic glass matrix composite with remarkable catalytic activity and reusability[J]. Applied Materials Today, 2020, 19: 100543. doi: 10.1016/j.apmt.2019.100543

    [10]

    Wei B B, Li X L, Sun H G, et al. Comparative study on the corrosion and self-cleaning behavior of Fe-B-C and Fe-B-P amorphous alloys in methylene blue dye solution degradation[J]. Journal of Non-Crystalline Solids, 2022, 575: 121212. doi: 10.1016/j.jnoncrysol.2021.121212

    [11]

    Wang W Q, Cai Z Z, Li S, et al. Microstructure and wear resistance of in-situ synthesized stellate Mo2C reinforced WC/amorphous composite coatings by resistance seam welding (RSW)[J]. Tribology International, 2023, 186: 108599. doi: 10.1016/j.triboint.2023.108599

    [12]

    Yan Y Q, Liang X, Ma J, et al. Rapid removal of copper from wastewater by Fe-based amorphous alloy[J]. Intermetallics, 2020, 124: 106849. doi: 10.1016/j.intermet.2020.106849

    [13]

    Liu C Y, Zhang Y X, Zhang C Y, et al. Thermal, magnetic and mechanical behavior of large-sized Fe-based amorphous alloy ribbons by twin-roll strip casting[J]. Intermetallics, 2021, 132: 107144. doi: 10.1016/j.intermet.2021.107144

    [14]

    Li H X, Lu Z C, Wang S L, et al. Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications[J]. Progress in Materials Science, 2019, 103: 235 − 318. doi: 10.1016/j.pmatsci.2019.01.003

    [15] 高鹏飞, 陈永君, 王增睿, 等. 铁基非晶涂层的研究进展与应用[J]. 表面技术, 2023, 52(3): 64 − 74.

    Gao Pengfei, Chen Yongjun, Wang Zengrui, et al. Research progress and application of Fe-based amorphous coatings[J]. Surface Technology, 2023, 52(3): 64 − 74.

    [16]

    Hong X, Tan Y F, Zhou C H, et al. Microstructure and tribological properties of Zr-based amorphous-nanocrystal-line coatings deposited on the surface of titanium alloys by electrospark deposition[J]. Applied Surface Science, 2015, 356: 1244 − 1251. doi: 10.1016/j.apsusc.2015.08.233

    [17]

    Zhou Z, Wang L, Wang F C, et al. Formation and corrosion behavior of Fe-based amorphous metallic coatings by HVOF thermal spraying[J]. Surface and Coatings Technology, 2009, 204(5): 563 − 570. doi: 10.1016/j.surfcoat.2009.08.025

    [18]

    Katakam S, Kumar V, Santhanakrishnan S, et al. Laser assisted Fe-based bulk amorphous coating: Thermal effects and corrosion[J]. Journal of Alloys and Compounds, 2014, 604: 266 − 272. doi: 10.1016/j.jallcom.2014.03.137

    [19]

    Peng Chao, Zhong Fengping, Yuan Meng, et al. Corrosion behavior of HVOF Inconel 625 coating in the simulated marine environment[J]. China Welding, 2024, 33(1): 46 − 51.

    [20] 王永东, 宫书林, 汤明日, 等. 激光熔覆工艺对高熵合金组织与性能影响[J]. 焊接学报, 2023, 44(8): 116 − 122. doi: 10.12073/j.hjxb.20220928001

    Wang Yongdong, Gong Shulin, Tang Mingri, et al. Effect of laser cladding process on the microstructure and properties of high entropy alloys[J]. Transactions of the China Welding Institution, 2023, 44(8): 116 − 122. doi: 10.12073/j.hjxb.20220928001

    [21] 张而耕, 杨磊, 杨虎, 等. 热喷涂Fe基非晶涂层的耐腐蚀性的研究及优化[J]. 中国腐蚀与防护学报, 2023, 43(2): 399 − 407. doi: 10.11902/1005.4537.2022.138

    Zhang Ergeng, Yang Lei, Yang Hu, et al. Review on research and optimization of corrosion resistance of thermal sprayed Fe-based amorphous coatings[J]. Journal of Chinese Society for Corrosion and Protection, 2023, 43(2): 399 − 407. doi: 10.11902/1005.4537.2022.138

    [22]

    Shrivastava A, Mukherjee S, Chakraborty S S. Addressing the challenges in remanufacturing by laser-based material deposition techniques[J]. Optics & Laser Technology, 2021, 144: 107404. doi: 10.1016/j.optlastec.2021.107404

    [23]

    Guo R Q, Zhang C, Chen Q, et al. Study of structure and corrosion resistance of Fe-based amorphous coatings prepared by HVAF and HVOF[J]. Corrosion Science, 2011, 53(7): 2351 − 2356. doi: 10.1016/j.corsci.2010.12.022

    [24]

    Liu G, An Y L, Guo Z H, et al. Structure and corrosion behavior of iron-based metallic glass coatings prepared by LPPS[J]. Applied Surface Science, 2012, 258(14): 5380 − 5386. doi: 10.1016/j.apsusc.2012.02.015

    [25]

    Farmer J, Choi J, Saw C, et al. Iron-based amorphous metals: high-performance corrosion-resistant material development[J]. Metallurgical and Materials Transactions A, 2009, 40(6): 1289 − 1305. doi: 10.1007/s11661-008-9779-8

    [26] 胡立威, 李晋锋, 乐国敏, 等. 激光功率对Zr基复合涂层微观组织与性能的影响[J]. 材料热处理学报, 2018, 39(11): 101 − 106.

    Hu Liwei, Li Jinfeng, Le Guomin, et al. Effect of laser power on microstructure and property of laser cladded Zr-Cu-Ni-Al coating[J]. Transactions of Materials and Heat Treatment, 2018, 39(11): 101 − 106.

    [27] 李永强, 赵贺, 赵熹华, 等. 铝合金LB-RSW焊接中RSW温度场的数值模拟[J]. 焊接学报, 2009, 30(4): 29 − 32. doi: 10.3321/j.issn:0253-360X.2009.04.008

    Li Yongqiang, Zhao He, Zhao Xihua, et al. Numerical simulation of RSW temperature field during aluminum alloys LB-RSW[J]. Transactions of the China Welding Institution, 2009, 30(4): 29 − 32. doi: 10.3321/j.issn:0253-360X.2009.04.008

    [28] 王文琴, 王昭漫, 李玉龙, 等. 电阻缝焊法制备铁基WC/金属双层涂层及其摩擦行为[J]. 金属学报, 2019, 55(4): 537 − 546. doi: 10.11900/0412.1961.2018.00271

    Wang Wenqin, Wang Zhaoman, Li Yulong, et al. Wear behavior of Fe-WC/Metal double layer coatings fabricated by resistance seam weld method[J]. Acta Metallurgica Sinica, 2019, 55(4): 537 − 546. doi: 10.11900/0412.1961.2018.00271

    [29]

    Pan C G, Zhang R, Wang D, et al. Preparation of high performance Fe-based amorphous coating by resistance seam welding[J]. Surface & Coatings Technology, 2021, 408: 126813.

    [30]

    Kazakov Yu V, Potekhin V P. Mechanism of the formation of the weld core in the resistance seam welding of components with greatly differing thickness[J]. Welding International, 2012, 26(9): 723 − 727. doi: 10.1080/09507116.2011.653153

    [31]

    Toyoda Shunsuke, Goto Sota. Metallurgical design and performance of ERW linepipe with high-quality weld seam suitable for extra-low-temperature services[J]. Proceedings of the Biennial International Pipeline Conference, 2012, 137 (3): 439 − 446.

    [32]

    Okabe T, Yasuda K, Nakata K. Dynamic observations of welding phenomena and finite element analysis in high-frequency electric resistance welding[J]. Welding International, 2016, 30(11): 835 − 845. doi: 10.1080/09507116.2016.1142203

    [33] 李永强, 赵贺, 赵熹华, 等. 低碳钢激光束电阻缝焊复合焊接中电阻缝焊温度场的数值模拟[J]. 吉林大学学报(工学版), 2010, 40(3): 709 − 713.

    Li Yongqiang, Zhao He, Zhao Xihua, et al. Numerical simulation of RSW temperature field during mild steel LB-RSW[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(3): 709 − 713.

图(11)  /  表(2)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  12
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-09
  • 网络出版日期:  2024-06-23
  • 刊出日期:  2024-08-24

目录

/

返回文章
返回