Microstructure and mechanical properties of NAB by wire and arc additive manufacturing
-
摘要:
镍铝青铜合金由于其在海水中的高耐腐蚀性能、抗生物污染性能和良好的抗空化冲击性能,被广泛运用于船舶螺旋桨的制造,但传统的铸造镍铝青铜由于材料成本过高,并且性能已不再适用于现今越来越高的要求. 为了获得性能优异的镍铝青铜构件,采用了电弧增材制造技术成功制造了镍铝青铜合金构件,研究了铸造镍铝青铜和电弧增材的镍铝青铜的微观组织和力学性能的差异. 结果表明,与铸态镍铝青铜合金相比,电弧增材制造的镍铝青铜合金有更细小的微观组织,κⅠ相的析出被抑制,绝大多数的β′相转变为α + κⅢ的共析组织,元素分布更均匀. 与铸态镍铝青铜相比(545 MPa,20%),电弧增材制造的镍铝青铜构件展现了更加优异的力学性能,极限抗拉强度达到700 MPa,断后伸长率达到38%.
Abstract:Nickel aluminum bronze alloy (NAB) is extensively utilized in the production of ship propellers because of its high corrosion resistance, resilience against biological fouling, and excellent cavitation erosion resistance in seawater. Nevertheless, conventional cast nickel aluminum bronze is no longer adequate for today's escalating demands, primarily due to its steep material cost and performance that has become outdated. To procure nickel aluminum bronze components possessing outstanding performance, wire and arc additive manufacturing technology was employed to successfully produce nickel aluminum bronze alloy components. A comparative analysis was conducted to examine the disparities in microstructure and mechanical properties between cast nickel aluminum bronze and wire and arc added nickel aluminum bronze. The findings revealed that, in contrast to as-cast nickel aluminum bronze alloy, the wire and arc added variant exhibited a refined microstructure, inhibited precipitation of the κⅠ phase, and a significant transformation of the β' phase into an eutectoid structure consisting of α + κⅢ, ultimately leading to a more homogenous distribution of elements. When juxtaposed with as-cast nickel aluminum bronze (which has a tensile strength of 545 MPa and a ductility of 20%), the wire and arc added nickel aluminum bronze components demonstrated superior mechanical properties, achieving an ultimate tensile strength of up to 700 MPa and a ductility of 38%.
-
-
表 1 铸态镍铝青铜和丝材化学成分(质量分数,%)
Table 1 Composition of as-cast NAB and welding wire
材料 Al Fe Mn Ni Cu C95800 8.90 3.90 1.10 4.30 余量 丝材 8.72 3.31 1.49 4.38 余量 表 2 W-NAB的EDS分析(原子分数,%)
Table 2 EDS analysis of W-NAB
区域 Cu Al Ni Fe A 78.4 9.6 4.6 3.3 B 53.4 16.6 10.0 7.3 C 70.4 11.9 5.8 4.5 -
[1] 丁阳. 镍铝青铜合金应力腐蚀开裂及腐蚀疲劳行为的微观机理研究[D]. 上海: 上海交通大学, 2019. Din Yang. Research on microscopic mechanism of stress corrosion cracking and corrosion fatigue behavior of nickel-aluminum bronze alloys[D]. Shanghai: Shanghai Jiao Tong University, 2019.
[2] 张化龙. 国内外镍铝青铜螺旋桨材料在舰船上的应用[J]. 机械工程材料, 1996(1): 33 − 35,47. Zhang Hualong. The application of nickel-aluminum bronze propeller materials on ships at home and abroad[J]. Materials for Mechanical Engineering, 1996(1): 33 − 35,47.
[3] Ni D, Xiao B L, Ma Z, et al. Corrosion properties of friction-stir processed cast NiAl bronze[J]. Corrosion Science, 2010, 52:1610 − 1617. doi: 10.1016/j.corsci.2010.02.026
[4] 康全飞, 胡树兵, 曾思琪, 等. 船用螺旋桨材料镍铝青铜的热处理强化[J]. 中国有色金属学报, 2018, 28(1): 107 − 115. Kang Quanfei, Hu Shubing, Zeng Siqi, et al. Heat treatment strengthening of nickel-aluminum bronze alloy for marine propeller[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(1): 107 − 115.
[5] 白鼎甲, 白秀琴, 郭智威, 等. 大型邮船海水泵叶轮材料的空蚀性能[J]. 船舶工程, 2022, 44(9): 7 − 13. Bai Dingjia, Bai Xiuqin, Guo Zhiwei, et al. Cavitation erosion performance of impeller materials for large cruise seawater pump[J]. Ship Engineering, 2022, 44(9): 7 − 13.
[6] 冯晓伟, 郑志斌, 冯波, 等. 镍铝青铜(NAB)的微观组织及腐蚀性能[J]. 腐蚀与防护, 2022, 43(10): 84 − 88. Feng Xiaowei, Zheng Zhibin, Feng Bo, et al. Microstructure and corrosion properties of nickel aluminum bronze(NAB)[J]. Corrosion & Protection, 2022, 43(10): 84 − 88.
[7] Qin Z B, Zhang Q, Luo Q, et al. Microstructure design to improve the corrosion and cavitation corrosion resistance of a nickel-aluminum bronze[J]. Corrosion Science, 2018, 139: 255 − 266. doi: 10.1016/j.corsci.2018.04.043
[8] Schüßler A, Exner H. The corrosion of nickel-aluminium bronzes in seawater—I. Protective layer formation and the passivation mechanism[J]. Corrosion Science, 1993, 34: 1793 − 1802. doi: 10.1016/0010-938X(93)90017-B
[9] Song Q N, Zheng Y G, Ni D R, et al. Characterization of the corrosion product films formed on the as-cast and friction-stir processed Ni-Al bronze in a 3.5 wt% NaCl solution[J]. Corrosion, 2015, 71(5): 606 − 614. doi: 10.5006/1391
[10] 秦真波. 镍铝青铜合金的腐蚀行为及其表面改性研究[D]. 上海: 上海交通大学, 2018. Qin Zhenbo. Research on corrosion behavior of Nickel-Aluminum Bronze alloy and its surface modification[D]. Shanghai: Shanghai Jiao Tong University, 2018.
[11] Murr L E. Metallurgy of additive manufacturing: Examples from electron beam melting[J]. Additive Manufacturing, 2015, 5: 40 − 53. doi: 10.1016/j.addma.2014.12.002
[12] Caballero A, Ding J, Ganguly S, et al. Wire + arc additive manufacture of 17-4 PH stainless steel: Effect of different processing conditions on microstructure, hardness, and tensile strength[J]. Journal of Materials Processing Technology, 2019, 268: 54 − 62. doi: 10.1016/j.jmatprotec.2019.01.007
[13] Spencer J D, Dickens P M, Wykes C M. Rapid prototyping of metal parts by three-dimensional welding[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 1998, 212(3): 175 − 182. doi: 10.1243/0954405981515590
[14] 苗玉刚, 刘吉, 李小旭, 等. BC-MIG丝材电弧增材制造NAB/钢复合结构的微观组织与力学性能[J]. 焊接学报, 2023, 44(7): 56 − 62. Miao Yugang, Liu Ji, Li Xiaoxu, et al. Microstructure and mechanical properties of NAB/steel composite structures by additive manufacturing with BC-MIG wire arc[J]. Transactions of the China Welding Institution, 2023, 44(7): 56 − 62.
[15] 张帅锋, 吕逸帆, 魏正英, 等. 基于CMT的电弧熔丝增材Ti-6AI-3Nb-2Zr-1Mo合金的组织与性能[J]. 焊接学报, 2021, 42(2): 56 − 62. Zhang Shuaifeng, Lü Yifan, Wei Zhengying, et al. Microstructures and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy fabricated by CMT-wire arc additive manufacturing[J]. Transactions of the China Welding Institution, 2021, 42(2): 56 − 62.
[16] Lü Y, Hu M, Wang L, et al. Influences of heat treatment on fatigue crack growth behavior of NiAl bronze (NAB) alloy[J]. Journal of Materials Research, 2015, 30(20): 3041 − 3048. doi: 10.1557/jmr.2015.282
[17] Cai X, Wang Z, Dong L, et al. Advanced mechanical properties of nickel‐aluminum bronze/steel composite structure prepared by wire‐arc additive manufacturing[J]. Materials & Design, 2022, 221: 110969.
[18] Dharmendra C, Gururaj K, Pradeep K G, et al. Characterization of κ-precipitates in wire-arc additive manufactured nickel aluminum bronze: A combined transmission Kikuchi diffraction and atom probe tomography study[J]. Additive Manufacturing, 2021, 46: 102137. doi: 10.1016/j.addma.2021.102137
[19] Qin Z, Xia D H, Zhang Y, et al. Microstructure modification and improving corrosion resistance of laser surface quenched nickel–aluminum bronze alloy[J]. Corrosion Science, 2020, 174: 108744. doi: 10.1016/j.corsci.2020.108744
[20] Dharmendra C, Hadadzadeh A, Amirkhiz B S, et al. Microstructural evolution and mechanical behavior of nickel aluminum bronze Cu-9Al-4Fe-4Ni-1Mn fabricated through wire-arc additive manufacturing[J]. Additive Manufacturing, 2019, 30: 100872. doi: 10.1016/j.addma.2019.100872
-
期刊类型引用(13)
1. 何阳阳,吴新伟,汪超. 10Cr9MoW2VNbBN的焊接工艺研究. 机械制造文摘(焊接分册). 2024(06): 13-16 . 百度学术
2. 路学成,韩玉茹,张志强,白玉洁,张天刚,郭志永. 添加N_2保护对CMT-P复合电弧焊接头组织与性能的影响. 焊接学报. 2023(04): 63-70+133 . 本站查看
3. 雷小伟,余巍,符成学. TA5钛合金CMT+P混合过渡焊接工艺研究. 热加工工艺. 2023(09): 51-55 . 百度学术
4. 徐连勇,王成,杨连河,赵雷,荆洪阳,韩永典. P110套管内壁CMT/P堆焊Inconel 625合金的组织及性能研究. 机械工程学报. 2023(14): 159-168 . 百度学术
5. 王宇冬,尚建路,孙斌,杨佳,王妍. 不同焊接工艺对P92钢焊接接头组织性能的影响. 钢铁研究学报. 2023(09): 1152-1160 . 百度学术
6. 张志强,李涵茜,贺世伟,路学成,王浩,张天刚. 激光与CMT-P电弧复合增材构件的微观组织特征研究. 材料保护. 2023(10): 74-82 . 百度学术
7. 殷亚运,雷小伟,崔永杰,杜志博,付占波,鄂楠. 基于CMT技术的薄壁不锈钢框架焊接工艺研究. 热加工工艺. 2022(03): 127-130 . 百度学术
8. 徐连勇,白玉洁,韩永典,荆洪阳,张志强. 双相不锈钢CMT-P复合焊接微区组织特征. 焊接学报. 2022(03): 1-6+113 . 本站查看
9. 张忠科,刘旭峰,李昭,雄健强. P92钢等离子弧焊接接头原位拉伸的SEM观察研究. 材料导报. 2021(24): 24128-24133 . 百度学术
10. 万夫伟,郭新芳,马志宝,张汝潺,周海涛. G115大壁厚管道GTAW+TIP TIG焊接工艺. 焊接技术. 2021(12): 71-74 . 百度学术
11. 卜凡辉,徐连勇,荆洪阳,庞红宁,韩永典,赵雷. Influence of the repair length on the residual stress in P92 steel repair welds. China Welding. 2020(02): 17-22 . 百度学术
12. 徐连勇,庞红宁,赵雷,韩永典,迟大钊. G115钢CMT+P焊接工艺及组织和性能. 焊接学报. 2020(08): 1-5+97 . 本站查看
13. 卜凡辉,徐连勇,韩永典,赵雷. 补焊长度对P92补焊残余应力的影响. 焊接学报. 2019(09): 19-24+161-162 . 本站查看
其他类型引用(7)