Vacuum brazing Ti2AlNb / GH4169 alloy with (TiZrHf)40(NiCu)55Al5 high-entropy amorphous filler metal
-
摘要:
设计了一种高熵非晶钎料(TiZrHf)40(NiCu)55Al5对Ti2AlNb合金与GH4169镍基高温合金进行真空钎焊,分析了钎焊工艺对Ti2AlNb合金/GH4169镍基高温合金接头界面组织形貌、力学性能及断裂行为的影响规律. 结果表明,钎焊接头可划分为Ti2AlNb/等温凝固区(I区)/钎缝中心区(II区)/扩散反应区(III区)/GH4169;钎焊接头典型界面组织为Ti2AlNb/B2 + Ti2Ni(Al, Nb)/(Ti, Zr, Hf)(Ni, Cu)/(Ni, Cr, Fe, Ti)ss + Cr-rich(Ni, Cr, Fe)ss + Ni-rich(Ni, Cr, Fe)ss + (Ni, Cr, Fe)ss/GH4169;随钎焊温度升高和保温时间延长,钎焊接头的抗剪强度均呈现出先增大后减小的趋势,当钎焊温度为1 020 ℃、钎焊时间为15 min时,接头的抗剪强度达到最大237 MPa. 断口分析表明,接头主要断裂在Ti2Ni(Al, Nb) + (Ti, Zr, Hf)(Ni, Cu) + (Ni, Cr, Fe, Ti)ss处,并逐渐向扩散反应区扩展,断口形貌呈现出典型的解理断裂特征.
-
关键词:
- Ti2AlNb合金 /
- GH4169镍基高温合金 /
- 真空钎焊 /
- 微观组织 /
- 抗剪强度
Abstract:A high-entropy amorphous brazing filler metal (TiZrHf)40(NiCu)55Al5 was designed for vacuum brazing of Ti2AlNb alloy and GH4169 nickel-based superalloy. The effects of brazing parameters on the interfacial microstructure, mechanical properties and fracture behavior of Ti2AlNb alloy/GH4169 nickel-based superalloy brazed joints were studied. The results showed that the brazed joints can be divided into Ti2AlNb/ diffusion reaction zone (zone I)/brazing seam center zone (zone II)/diffusion reaction zone (zone III)/GH4169. The typical interface microstructure of brazed joints was Ti2AlNb/B2 + Ti2Ni(Al, Nb)/(Ti, Zr, Hf)(Ni, Cu)/(Ni, Cr, Fe, Ti)ss + Cr-rich (Ni, Cr, Fe)ss + Ni-rich(Ni, Cr, Fe)ss + (Ni, Cr, Fe)ss/GH4169.With the increase of brazing temperature and brazing time, the shear strength of brazed joints increased first and then decreased. When the brazing temperature was
1020 ℃ and the brazing time was 15 min, the maximum shear strength of 237 MPa was obtained. The fracture analysis showed that the joint was mainly broken at zone of Ti2Ni(Al, Nb) + (Ti, Zr, Hf) (Ni, Cu) + (Ni, Cr, Fe, Ti)ss, and fracture path gradually expanded to the diffusion reaction zone. The fracture morphology showed typical cleavage fracture characteristics.-
Keywords:
- Ti2AlNb alloy /
- GH4169 nickel-base superalloy /
- vacuum brazing /
- microstructure /
- shear strength
-
-
表 1 母材化学成分(质量分数,%)
Table 1 Chemical composition of base metals
材料 Cr Fe Mo Nb Al Ti Ni Ti2AlNb — — — 44 11.4 余量 — GH4169 18.06 18.90 2.96 5.43 0.58 0.94 余量 表 2 图5中标记位置的EPMA点元素分析(原子分数,%)
Table 2 EPMA analysis results of the marked locations in Fig. 5
位置 Al Ti Cr Fe Ni Cu Zr Nb Hf 可能相 A 13.89 54.55 0.11 0.40 2.38 0.91 0.19 27.58 — B2 B 14.27 40.70 — 0.61 19.30 5.09 0.91 18.75 0.37 Ti2Ni(Al, Nb) C 11.92 34.93 0.10 1.09 21.17 6.09 1.83 21.68 1.16 Ti2Ni(Al, Nb) D 7.66 20.29 0.90 3.03 32.06 8.35 7.85 13.70 6.16 (Ti, Zr, Hf)(Ni, Cu) E 1.29 17.38 0.19 0.91 42.77 13.09 11.51 2.65 10.20 (Ti, Zr, Hf)(Ni, Cu) F 1.42 22.22 0.45 2.86 44.46 8.65 7.12 2.54 10.27 (Ti, Zr, Hf)(Ni, Cu) G 2.76 31.74 0.41 3.94 41.40 4.91 5.01 3.43 6.40 (Ti, Zr, Hf)(Ni, Cu) H 2.83 30.30 0.83 5.07 41.84 4.25 4.37 2.66 7.86 (Ti, Zr, Hf)(Ni, Cu) I 1.46 13.32 16.67 23.77 27.81 0.67 4.31 5.00 6.10 (Ni, Cr, Fe, Ti)ss J 0.39 3.91 58.36 18.11 10.03 — 1.04 4.55 0.64 Cr-rich(Ni, Cr, Fe)ss K 1.62 6.30 26.75 17.13 40.52 0.15 0.70 4.38 0.19 Ni-rich(Ni, Cr, Fe)ss L — 5.67 36.10 20.53 32.60 — 0.45 2.01 0.16 (Ni, Cr, Fe)ss M 1.61 8.80 20.66 16.88 47.72 0.38 0.88 3.82 0.13 Ni-rich(Ni, Cr, Fe)ss 表 3 图11中标记位置的EDS点分析(原子分数,%)
Table 3 EDS points analysis results of the marked locations in Fig. 11
位置 Al Ti Cr Fe Ni Cu Zr Nb Hf 可能相 A 11.13 42.12 0.27 1.43 21.92 2.52 1.12 18.32 0.97 Ti2Ni(Al, Nb) B 15.67 37.34 0.14 1.09 19.54 5.32 1.30 18.10 1.47 Ti2Ni(Al, Nb) C 10.04 33.26 1.04 2.33 25.41 3.68 2.16 19.66 2.21 Ti2Ni(Al, Nb) D 9.82 30.29 0.43 1.90 27.04 5.13 2.33 20.59 2.19 Ti2Ni(Al, Nb) E 9.27 34.96 0.29 1.37 27.77 4.06 1.97 18.32 1.67 Ti2Ni(Al, Nb) F 1.79 14.14 17.95 23.42 27.74 0.62 4.15 3.29 6.35 (Ni, Cr, Fe, Ti)ss G 16.97 30.29 1.78 2.99 18.58 4.58 1.93 20.21 2.65 Ti2Ni(Al, Nb) H 19.06 29.44 1.40 2.58 17.51 4.67 1.85 20.98 2.50 Ti2Ni(Al, Nb) I 2.51 17.61 24.28 21.59 21.62 0.19 1.69 8.73 1.78 (Ni, Cr, Fe, Ti)ss J 2.84 16.00 28.38 22.01 18.64 0.42 1.29 8.99 1.43 (Ni, Cr, Fe, Ti)ss -
[1] 李亚江, 夏春智, 石磊. 国内镍基高温合金的焊接研究现状[J]. 现代焊接, 2010(7): 1 − 4. Li Yajiang, Xia Chunzhi, Shi Lei. Present situation about welding research of nickel-base high-temperature alloy at home[J]. Modern Welding Technology, 2010(7): 1 − 4.
[2] 王会阳, 安云岐, 李承宇, 等. 镍基高温合金材料的研究进展[J]. 材料导报, 2011, 25(S2): 482 − 486. Wang Huiyang, An Yunqi, Li Chengyu, et al. Research progress of Ni-based superalloys[J]. Materials Reports, 2011, 25(S2): 482 − 486.
[3] Li P, Wang Y C, Zhang L L, et al. High strength diffusion bonding of Ti2AlNb to GH4169 with (TiZrHfNb)95Al5 high entropy interlayer[J]. Materials Science and Engineering: A, 2024, 902: 146558. doi: 10.1016/j.msea.2024.146558
[4] Peters M, Leyens C. Titanium and titanium alloys: fundamentals and applications[M]. Weinheim: Wiley-vch, 2006.
[5] Chen B B, Xiong H P, Guo S Q, et al. Microstructure and mechanical properties of dissimilar welded Ti3Al/Ni-based superalloy joint using a Ni-Cu filler alloy[J]. Metallurgical and Materials Transactions: A, Physical Metallurgy and Materials Science, 2015, 46(2): 756 − 761. doi: 10.1007/s11661-014-2652-z
[6] Chen B Q, Xiong H P, Sun B B, et al. Dissimilar joining of Ti3Al-based alloy to Ni-based superalloy by arc welding technology using gradient filler alloys[J]. Materials and Design, 2015, 87: 732 − 741. doi: 10.1016/j.matdes.2015.07.168
[7] Cai X L, Li H M, Ji B K, et al. Effect of single alloying element (Ti, Nb, V, Cu) on microstructure and mechanical properties of dissimilar TiAl/Ni-based superalloy laser joints[J]. Optics & Laser Technology, 2022, 146: 107575.
[8] Ren H S, Wu X, Chen B, et al. Microstructures and mechanical properties of Ti3Al/Ni-based superalloy joints diffusion bonded with Ni and TiNiNb foils[J]. Welding in the World, 2017, 61(2): 375 − 381. doi: 10.1007/s40194-016-0415-8
[9] He P, Wang J, Lin T, et al. Effect of hydrogen on diffusion bonding of TiAl-based intermetallics and Ni-based superalloy using hydrogenated Ti6Al4V interlayer[J]. International Journal of Hydrogen Energy, 2014, 39(4): 1882 − 1887. doi: 10.1016/j.ijhydene.2013.11.035
[10] 钱锦文, 李京龙, 侯金保, 等. Nb + Ni中间层对Ti2AlNb与GH4169扩散连接接头组织与性能影响[J]. 航空材料学报, 2009, 29(1): 57 − 62. Qian Jinwen, Li Jinglong, Hou Jinbao, et al. Microstructures and mechanical properities of diffusion bonded Ti2AlNb and GH4169 jionts by using Nb + Ni interlayer[J]. Journal of Aeronautical Materials, 2009, 29(1): 57 − 62.
[11] Zhang L L, Dong H G, Li P, et al. Vacuum brazing TiAl intermetallic to K4169 alloy using amorphous filler metals Ti56.25–xZrxNi25Cu18. 75[J]. Journal of Materials Science & Technology, 2023, 154: 217-231.
[12] Dong D, Shi K Q, Zhu D D, et al. Microstructure evolution and mechanical properties of high Nb–TiAl alloy/GH4169 joints brazed using CuTiZrNi amorphous filler alloy[J]. Intermetallics, 2021, 139: 107351. doi: 10.1016/j.intermet.2021.107351
[13] Cai J J, Hu S P, Liu H B, et al. Microstructural evolution and mechanical properties of Ti2AlNb/GH99 superalloy brazed joints using TiZrCuNi amorphous filler alloy[J]. Aerospace, 2023, 10(1): 73. doi: 10.3390/aerospace10010073
[14] Li L, Zhao W, Feng Z X, et al. Interfacial microstructure and shear strength of Ti50Al50 joint vacuum brazed with Ti-Cu-Ni-Nb-Al-Zr-Hf amorphous filler alloy[J]. Rare Metal Materials and Engineering, 2022, 51(2): 378 − 385.
[15] Wan B, Li X Q, Pan C L, et al. Microstructure and mechanical properties of TiAl/Ni-based superalloy joints vacuum brazed with Ti–Zr–Fe–Cu–Ni–Co–Mo filler metal[J]. Rare Metals, 2021, 40(8): 2134 − 2142. doi: 10.1007/s12598-020-01550-x
[16] Jiang C Y, Li X Q, Wan B, et al. Microstructure evolution and mechanical properties of TiAl/GH536 joints vacuum brazed with Ti–Zr–Cu–Ni filler metal[J]. Intermetallics, 2022, 142: 107468. doi: 10.1016/j.intermet.2022.107468
[17] 李小强, 娄立, 屈盛官, 等. 一种钛基钎料钎焊TiAl/GH536的接头界面组织及性能[J]. 焊接学报, 2019, 40(10): 80 − 85. Li Xiaoqiang, Luo Li, Qu Shengguan, et al. Microstructure and properties of brazing joints with a Ti based filler of TiAl/GH536 alloy[J]. Transactions of the China Welding Institution, 2019, 40(10): 80 − 85.
[18] Gao M C, Yeh J W, Liaw P K, et al. High-entropy alloys: fundamentals and applications[M]. Switzerland: Springer, 2016.
[19] Dong K W, Kong J, Yang Y, et al. Achieving high-strength joining of TiAl and Ni-based alloys at room temperature and 750 ℃ via utilizing a quinary FeCoNi-based amorphous filler[J]. Journal of Materials Research and Technology, 2020, 9(2): 1955 − 1965. doi: 10.1016/j.jmrt.2019.12.028
[20] Dong K W, Kong J, Peng Y, et al. A new strategy for high-strength joining of dissimilar materials[J]. Journal of Materials Processing Technology, 2020, 283: 116724. doi: 10.1016/j.jmatprotec.2020.116724
[21] Ren H S, Feng H L, Ren X Y, et al. Joining of TiAl-based alloy and a Ni-based superalloy with a NiCoFeCuSiB high entropy filler metal[J]. Welding in the World, 2022, 66(3): 557 − 565. doi: 10.1007/s40194-021-01245-6
[22] Kokabi D, Kaflou A. TiAl/IN718 dissimilar brazing with TiZrNiCuCo high-entropy filler metal: phase characterization and fractography[J]. Welding in the World, 2021, 65(6): 1189 − 1198. doi: 10.1007/s40194-021-01075-6
[23] Inoue A, Zhang W. Formation, thermal stability and mechanical properties of Cu-Zr-Al bulk glassy alloys[J]. Materials Transactions, 2002, 43(11): 2921 − 2925. doi: 10.2320/matertrans.43.2921
[24] Kim K B, Warren P J, Cantor B. Metallic glass formation in multicomponent (Ti, Zr, Hf, Nb)–(Ni, Cu, Ag)–Al alloys[J]. Journal of Non-Crystalline Solids, 2003, 317(1-2): 17 − 22. doi: 10.1016/S0022-3093(02)02002-1
[25] 韩文倩, 董红刚, 马月婷, 等. Ti43.76Zr12.50Cu37.49-xNi6.25Cox非晶钎料真空钎焊TC4钛合金/316L不锈钢[J]. 焊接学报, 2024, 45(1): 47 − 57. doi: 10.12073/j.hjxb.20221123001 Han Wenqian, Dong Honggang, Ma Yueting, et al. Vacuum brazing TC4 titanium alloy/316L stainless steelwith Ti43.76Zr12.50Cu37.49-xNi6.25Cox amorphous filler metals[J]. Transactions of the China Welding Institution, 2024, 45(1): 47 − 57. doi: 10.12073/j.hjxb.20221123001
[26] Ren H S, Ren X Y, Long W M, et al. Formation mechanism of interfacial microstructures and mechanical properties of Ti2AlNb/Ni-based superalloy joints brazed with NiCrFeSiB filler metal[J]. Progress in Natural Science: Materials International, 2021, 31(2): 310 − 318. doi: 10.1016/j.pnsc.2020.12.009