高级检索

6061铝合金搅拌摩擦沉积增材修复工艺及修复区性能

程龙, 杨新岐, 唐文珅, 罗庭, 王瑞林

程龙, 杨新岐, 唐文珅, 罗庭, 王瑞林. 6061铝合金搅拌摩擦沉积增材修复工艺及修复区性能[J]. 焊接学报, 2024, 45(8): 12-23. DOI: 10.12073/j.hjxb.20230806001
引用本文: 程龙, 杨新岐, 唐文珅, 罗庭, 王瑞林. 6061铝合金搅拌摩擦沉积增材修复工艺及修复区性能[J]. 焊接学报, 2024, 45(8): 12-23. DOI: 10.12073/j.hjxb.20230806001
CHENG Long, YANG Xinqi, TANG Wenshen, LUO Ting, WANG Ruilin. Processes and repair area properties of AA6061 repaired via additive friction stir deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 12-23. DOI: 10.12073/j.hjxb.20230806001
Citation: CHENG Long, YANG Xinqi, TANG Wenshen, LUO Ting, WANG Ruilin. Processes and repair area properties of AA6061 repaired via additive friction stir deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 12-23. DOI: 10.12073/j.hjxb.20230806001

6061铝合金搅拌摩擦沉积增材修复工艺及修复区性能

基金项目: 国家自然科学基金资助项目(52175356)
详细信息
    作者简介:

    程龙,硕士研究生;主要研究方向为搅拌摩擦增材制造修复方面的应用;Email: cldyx@tju.edu.cn

    通讯作者:

    杨新岐,博士,教授; Email: xqyang@tju.edu.cn.

  • 中图分类号: TG 453.9

Processes and repair area properties of AA6061 repaired via additive friction stir deposition

  • 摘要:

    为了探讨修复工艺及模拟凹槽缺陷尺寸对搅拌摩擦沉积增材(additive friction stir deposition,AFSD)修复区组织及性能影响规律,对5 mm厚AA6061-T6板进行AFSD修复工艺试验. 结果表明,对于3 mm深度、6 ~ 24 mm不同宽度凹槽缺陷,采用主轴转速400 r/min、移动速度150 ~ 300 mm/min修复工艺均能实现沉积层与基板的有效冶金连接. 当凹槽宽度小于送料棒直径时,可以获得完全致密无缺陷的修复区;修复区附近可划分为修复沉积区、热力影响区、热影响区及母材. 沉积区完全由细小等轴晶组成,晶粒尺寸相当于基材晶粒尺寸的9.1% ~ 12.8%;在沉积区内主要强化相β"相几乎全部溶解,平均硬度为母材硬度的71.6%. 在400 r/min和300 mm/min工艺下,凹槽宽度12 mm修复态力学性能最佳,抗拉强度和断后伸长率分别为197.4 MPa和10.92%,试样均断裂于母材热影响区与热力影响区的交界处,具有韧性断裂模式. 当凹槽宽度为24 mm大于送料棒直径时,在400 r/min和150 mm/min工艺下力学性能最佳,修复态抗拉强度和断后伸长率分别为178.9 MPa和7.74%,此时产生于沉积层与基材结合界面的弱连接是影响修复性能关键因素.

    Abstract:

    The repair experiments of the additive friction stir deposition (AFSD) for the AA6061-T6 plates of 5 mm thickness were performed, and the influences of the repair processing parameters and groove defect sizes on the microstructures and properties of the repaired zone were explored. It is shown that adequate metallurgical bonding between the deposited layer and subtract can successfully be obtained for the groove defects with 3 mm depth and 6~24 mm widths under the rotational speed of 400 r/min and the transverse speeds of 150~300 mm/min. The fully dense and defect-free repair can be achieved when the groove width is smaller than the feed rod diameter, and the repair zone can be divided into the deposited zone (DZ), thermo-mechanically affected zone (TMAZ), heat-affected zone (HAZ), and base material (BM). The DZ is composed of refined equiaxed grains with grain sizes ranging from 9.1% to 12.8% of that of BM. The main β" strengthening phase in the DZ is almost completely dissolved, which results in the reduction of the average hardness of DZ corresponding to 71.6% of that of BM. For the AFSD parameters of 400 r/min, 300 mm/min, the tensile strength and elongation of the repaired sample with 12 mm groove width can reach the best mechanical properties of 197.4 MPa and 10.92%, respectively. The fracture sites of samples are all located at the interfaces of HAZ and TMAZ and they have the ductile fracture mode. The tensile strength and elongation of the repaired sample with the groove width of 24 mm which is greater than the feed rod diameter are the best mechanical properties of 178.9 MPa and 7.74%, while for the 400 r/min,150 mm/min AFSD parameters. In this case, the weak-bonding defects formed at the interface between the deposited layer and BM are the key factor to influence the repair property. The experimental findings provide valuable insights for developing novel repair technology via AFSD in aluminum alloys.

  • CMT Cycle Step焊接工艺是通过控制每个焊点的熔滴数,以及焊点与焊点之间的间隔时间,来获得焊缝表面特征纹路呈鱼鳞纹状的焊缝,既继承了CMT焊接工艺低热输入、无飞溅[1-3]等特点,又能够进一步控制热输入,在点焊、热敏感材料焊接、电弧增材制造等领域具有广阔的应用前景.

    众所周知,焊接工艺参数对焊缝成形的影响较大,同时成形又会影响焊缝质量[4]. 目前关于CMT焊接工艺对焊缝成形影响的研究报道较多,Kannan等人[5]研究了CMT工艺下弧长修正对AISI316L焊缝成形及性能的影响,结果表明,随着弧长修正的增大,熔宽逐渐增大,当弧长校正在0% ~ 20%的正范围内时,焊接接头的抗拉强度增加. 张栋等人[6]研究了高速CMT焊接条件下,焊接工艺参数对焊缝成形的影响,结果发现三个控制因素对焊缝成形的主次顺序为:峰值送丝速度,峰值持续时间,峰值电流. 刘志森等人[7]采用正交试验研究了CMT焊接工艺下送丝速度、焊接速度和层间温度对焊缝成形尺寸的影响规律,结果表明通过改变焊接速度可以引起熔宽和余高的显著变化,层间温度对余高和第2层增高影响较小. Yin等人[8]研究了双丝CMT焊接工艺参数对5083铝合金焊缝成形尺寸的影响,并拟合出能够预测焊缝成形的回归方程.

    与普通CMT焊接工艺相比,CMT Cycle Step新增了熔滴数量、间隔时间和焊点数量等工艺参数,且表面呈“鱼鳞纹状”特征. 而目前针对CMT Cycle Step工艺对焊缝成形影响的研究未见报道. 为系统研究CMT Cycle Step工艺参数对焊缝成形的影响,文中通过正交试验法,探究了CMT Cycle Step工艺参数对焊缝表面特征纹路的影响规律,并建立多元工艺参数与焊缝成形尺寸的回归方程,为预测焊缝形貌以及优化焊接工艺提供理论依据.

    图1为CMT Cycle Step焊接工艺原理示意图,可以看出,CMT Cycle Step焊接工艺参数主要包括送丝速度(wire speed)、熔滴数量(CMT cycles)、间隔时间(pause time interval)和焊点数量(interval cycles). CMT Cycle Step工艺下连续焊缝的表面由两两相邻的焊点搭接形成鱼鳞纹特征纹路,相邻鱼鳞纹的间距为鱼鳞纹步长S,搭接处的高度差即为鱼鳞纹高度差Δh.

    图  1  CMT Cycle Step工艺原理示意图
    Figure  1.  Schematic diagram of CMT cycle step process principle

    熔滴数量用于设置每个焊点的熔滴个数,取值越大焊点越大,熔滴数量可调节范围为50 ~ 2 000. 间隔时间用于设置焊点之间的间隔时间,间隔时间越长,焊点之间间距越大,间隔时间调节范围为0.01 ~ 2 s. 为获得成形良好的连续焊缝,熔滴数量一般取50 ~ 250,间隔时间一般取0.1 ~ 0.5 s. 焊点数量用于设置焊点总个数,决定焊缝长度,对焊缝成形影响极小,文中不做研究. 另外,焊接速度对焊缝成形影响较大[9-10],综合考虑,主要研究送丝速度、焊接速度、熔滴数量和间隔时间四个参数对焊缝熔宽B、堆焊层厚度h、鱼鳞纹步长S以及鱼鳞纹高度差Δh的影响.

    试验采用ABB IRB 2600机器人,集成Fronius全数字化TPS500i焊机,采用一元化控制调节焊接电流、电压与送丝速度,其各参数间的关系如图2所示. 采用直径1.0 mm的ER316L不锈钢焊丝,试板材料为316L不锈钢,保护气采用20 L/min的氩气.

    图  2  送丝速度与焊接电流、焊接电压的关系
    Figure  2.  Relationship between wire feeding speed and welding current and voltage

    采用正交试验法进行CMT Cycle Step平板堆焊试验,考察送丝速度、焊接速度、熔滴数量和间隔时间对焊缝成形的影响,4个因素分别选取5个等距的水平,具体见表1,采用L25正交表设计试验.

    表  1  正交试验表
    Table  1.  Orthogonal test table
    水平送丝速度X1/(m∙min−1)焊接速度X2/(mm∙s−1)熔滴数量X3间隔时间X4/s
    17.02500.1
    28.531000.2
    310.041500.3
    411.552000.4
    513.062500.5
    下载: 导出CSV 
    | 显示表格

    CMT Cycle Step工艺下焊缝成形如图3所示,鱼鳞纹步长S、鱼鳞纹高度差Δh、熔宽B、堆焊层厚度h测量结果见表2,正交试验结果的分析见表3. 从表3各参数极差可以看出,焊接速度对焊缝鱼鳞纹步长S的影响最大,其次是熔滴数量 、间隔时间和送丝速度;间隔时间对鱼鳞纹高度差Δh的影响最大,其次是焊接速度、送丝速度和熔滴数量;送丝速度对焊缝熔宽B的影响最大,其次是焊接速度、熔滴数量和间隔时间;焊接速度对堆焊层厚度h的影响最大,其次是熔滴数量、送丝速度和间隔时间.

    图  3  CMT Cycle Step工艺下焊缝成形
    Figure  3.  Weld forming diagram under CMT Cycle Step process
    表  2  正交试验测量结果
    Table  2.  Results of the orthogonal experiments
    序号因素X1
    水平
    因素X2
    水平
    因素X3
    水平
    因素X4
    水平
    鱼鳞纹步长
    S/mm
    鱼鳞纹高度差
    Δh/mm
    熔宽
    B/mm
    堆焊层厚度
    h/mm
    111111.070.016.805.61
    212223.520.126.204.84
    313334.820.246.294.02
    414449.440.466.053.54
    5155514.521.125.703.04
    621232.550.108.625.85
    722345.530.447.864.80
    823459.120.517.894.41
    924519.550.067.654.16
    1025124.360.345.723.13
    1131354.020.2010.505.74
    1232415.130.0610.845.44
    1333529.810.169.765.10
    1434133.470.326.543.78
    1535248.060.426.963.24
    1641423.930.0413.146.50
    1742537.320.2412.325.58
    1843143.540.228.123.72
    1944257.080.438.983.73
    2045318.300.169.073.94
    2151543.900.1114.006.72
    2252153.350.228.604.38
    2353213.870.1011.584.81
    2454326.910.2410.894.30
    25554311.500.369.843.90
    下载: 导出CSV 
    | 显示表格
    表  3  正交试验结果分析
    Table  3.  Analysis of the orthogonal experiments
    分析指标分析值X1X2X3X4因素主次
    Sk16.673.093.155.58X2 X3 X4 X1
    k26.224.975.015.70
    k36.096.235.915.93
    k46.037.297.826.09
    k55.909.349.027.61
    极差R0.776.255.872.03
    Δhk10.390.090.220.07X4 X2 X1 X3
    k20.290.210.230.18
    k30.230.240.250.25
    k40.210.300.280.33
    k50.200.480.330.49
    极差R0.190.390.110.42
    Bk16.2010.617.159.18X1 X2 X3 X4
    k27.549.168.469.14
    k38.928.728.928.72
    k410.328.029.558.59
    k510.987.459.888.33
    极差R4.783.162.730.85
    hk14.216.084.124.79X2 X3 X1 X4
    k24.475.014.494.77
    k34.664.414.564.62
    k44.693.904.754.40
    k54.823.454.924.26
    极差R0.612.630.800.53
    下载: 导出CSV 
    | 显示表格

    CMT Cycle Step工艺参数对焊缝表面特征纹路的影响如图4所示. 图4a给出了焊缝表面特征纹路—鱼鳞纹步长S随各参数的变化曲线,可以看出,随着熔滴数量和焊接速度的增加,焊缝表面鱼鳞纹步长S越长,是因为随着熔滴数量的增加,单个焊点持续焊接时间越长,焊点之间的间距越大;焊接速度增加时,也会使焊点之间间距增大,所以鱼鳞纹步长S随之增加. 随着间隔时间的增加,鱼鳞纹步长S逐渐增大,是因为间隔时间越长,焊点之间间距越大,也会使得鱼鳞纹步长S增加. 送丝速度对鱼鳞纹步长S的影响较小,主要是因为送丝速度的变化不会导致焊点之间的间距发生明显改变.

    图  4  工艺参数对焊缝表面特征纹路的影响
    Figure  4.  Influence of process parameters on characteristic lines of weld surface. (a) Influence of process parameters on S; (b) Influence of process parameters on Δh

    图4b给出了鱼鳞纹高度差Δh随各参数的变化曲线. 采用CMT Cycle Step工艺连续焊接时,焊缝表面鱼鳞纹高度差Δh是由相邻焊点搭接形成的,前一焊点收弧形成弧坑,后一焊点在弧坑处起弧,搭接处高度难以与中间平稳段一致,因此会存在一定高度差. 由图4b可以看出,焊接速度和间隔时间增加,鱼鳞纹高度差Δh呈逐渐增大的趋势,是因为焊接速度和间隔时间增加时,后一焊点与前一焊点的搭接量减小,导致鱼鳞纹高度差Δh增大.

    由此可见,适当减小焊接速度和间隔时间,可有效提高焊缝表面平整度. 送丝速度、熔滴数量与单个焊点内填充金属量相关,对焊点之间搭接量影响很小,因此对鱼鳞纹高度差Δh基本没有影响.

    为进一步量化工艺参数对焊缝表面特征纹路的影响,采用回归模型对数据进行拟合,由图4b可以看出鱼鳞纹高度差Δh随工艺参数变化的范围很小,因此只进一步探究各因素与鱼鳞纹步长S之间的关系. 对正交试验数据进行回归分析,发现鱼鳞纹步长S与焊点间隔距离相关,熔滴数量决定单个焊点持续焊接时间,焊点间隔距离与焊接速度和单个焊点持续焊接时间的乘积相关,鱼鳞纹步长S与熔滴数量和焊接速度的乘积相关,所以采用二次回归模型进行拟合,即

    $$ S = a + \sum\limits_{i = 1}^4 {{b_i}{x_i}} + \sum\limits_{i = 1}^4 {\sum\limits_{j = 1}^4 {{b_i}_j{x_i}} } {x_j} + \sum\limits_{i = 1}^4 {{b_i}_i{x_i}^2} $$ (1)

    式中:a为常数项系数,bi为一次项系数,bij为交叉项系数,bii为二次项系数[11]. 为保证回归数学模型的可靠性,利用F检验法检验回归模型及其包括的各个因素的显著性,对影响力较弱的因素予以简化[12]. 经简化后,最终得到焊缝鱼鳞纹步长S与送丝速度、焊接速度、熔滴数量和间隔时间之间的回归方程,即

    $$ \begin{split} & S = - 0.208 + 0.042{X_1} + 0.069{X_2} - 0.000\;5{X_3} + \\&\qquad 0.384{X_4} + 0.007{X_2}{X_3} + 1.02{X_2}{X_4} \end{split} $$ (2)

    图5为回归模型计算与试验测量焊缝表面鱼鳞纹特征尺寸对比图,通过对比计算值和试验测量值来验证回归方程拟合准确性,各点距离图5对角线越近,说明计算值与试验测量值偏差越小,方程拟合程度越高,观察发现各试验点均在对角线附近,可见,回归模型计算值与试验测试结果具有较好的对应关系.

    图  5  回归模型计算值与鱼鳞纹步长S测量值对比图
    Figure  5.  Comparison between calculated value of regression model and measured value of fish scale step S

    图6为工艺参数对焊缝成形尺寸的影响规律图. 由图6a6b可以看出,随着送丝速度的增加,焊缝熔宽B、堆焊层厚度h逐渐增大;随着焊接速度的增大,焊缝熔宽B、堆焊层厚度h逐渐减小. 与MIG等其他传统焊接方法规律一致,与文献[7]结果一致. 随着熔滴数量的增大,焊缝熔宽B、堆焊层厚度h逐渐增大,这是由于熔滴数量越大,单个焊点内熔滴个数越多,燃弧持续时间越长,因此焊缝熔宽B、堆焊层厚度h越大. 随着间隔时间的增大,焊缝熔宽B、堆焊层厚度h基本不变,这是由于间隔时间只会影响各焊点之间的间距,对焊缝成形尺寸影响较小.

    图  6  工艺参数对焊缝成形尺寸的影响
    Figure  6.  Effect of the welding parameters on bead forming dimension. (a) influence of process parameters on B; (b) influence of process parameters on h

    为进一步考察送丝速度、焊接速度、熔滴数量和间隔时间四个参数对焊缝成形尺寸熔宽B和堆焊层厚度h的影响,采用多元线性回归方法对正交试验数据进行拟合分析,得到熔宽B、堆焊层厚度h的回归方程,即

    $$ B = 2.272 - 0.822{X_1} - 0.745{X_2} + 0.013{X_3} - 2.252{X_4} $$ (3)
    $$ h = 6.03 + 0.096{X_1} - 0.637{X_2} + 0.004{X_3} - 1.434{X_4} $$ (4)

    图7为利用回归模型计算的焊缝成形尺寸计算值与试验测量获得的焊缝成形尺寸实测值的对比图,可以看出,回归模型计算数值与试验测试结果具有较好的对应关系,由此可以说明回归方程能够一定程度上反映送丝速度、焊接速度、熔滴数量和间隔时间4个工艺参数与焊缝熔宽B、堆焊层厚度h之间的关系.

    图  7  回归模型计算与焊缝成形实测值对比图
    Figure  7.  Comparison between regression model calculation and measured value of weld formation. (a) comparison between calculated and experimental values of weld width; (b) comparison between calculated and experimental values of weld overlay thickness

    (1) 随着焊接速度、熔滴数量和间隔时间的增大,鱼鳞纹步长S逐渐增大;随着焊接速度和间隔时间的增大,鱼鳞纹高度差Δh呈逐渐增大的趋势. 适当减小焊接速度和间隔时间,可有效减小鱼鳞纹高度差Δh.

    (2) 随着送丝速度的增加,焊缝熔宽B、堆焊层厚度h逐渐增大;随着焊接速度的增大,焊缝熔宽B、堆焊层厚度h逐渐减小. 随着熔滴数量的增大,焊缝熔宽B、堆焊层厚度h逐渐增大. 间隔时间对焊缝成形尺寸影响较小.

    (3) 通过建立送丝速度、焊接速度、熔滴数量和间隔时间与焊缝表面鱼鳞纹步长S和焊缝成形尺寸之间的回归方程,并对比试验值和预测值,验证了方程的准确性.

  • 图  1   模拟缺陷6 mm宽凹槽示意图(mm)

    Figure  1.   Schematic of 6 mm wide groove with simulated defects

    图  2   AFSD修复凹槽工艺示意图及试验过程

    Figure  2.   Schematic and experimental process of AFSD groove repair process.(a) repair begins;(b) repair process;(c) repair ends;(d) actual repair process;(e) top view of shaft shoulder;(f) side view of shaft shoulder

    图  3   金相及拉伸试样取样位置及尺寸(mm)

    Figure  3.   Sampling locations and dimensions for metallographic and tensile test specimens

    图  4   6061-T6基材微观组织以及SEM和EDS分析

    Figure  4.   Microstructure, SEM and EDS analysis results of 6061-T6. (a) microstructure of 6061-T6; (b) SEM of 6061-T6; (c) EDS analysis results of point 1; (d) EDS analysis results of point 2

    图  5   AFSD修复150-6试样截面宏观组织分区特征

    Figure  5.   Macrostructural zoning characteristics of 150-6 sample cross section

    图  6   AFSD修复300-6试样截面不同区域的显微组织

    Figure  6.   Microstructure of different regions of 150-6 sample cross section. (a) 150-6 macroscopic morphology of repaired specimen cross-section; (b) RS-HAZ; (c) interface at the RS; (d) RS-TMAZ; (e) DZ; (f) interface at the bottom; (g) MI-TMAZ (h) interface at the AS; (i) AS-TMAZ; (j) AS-HAZ

    图  7   不同工艺参数下修复试样DZ组织形貌

    Figure  7.   Microstructure morphology of DZ microstructure of repaired samples under different process parameters. (a) 300-6; (b)150-6; (c) 300-12; (d) 150-12; (e) 300-18; (f) 150-18; (g) 300-24; (h) 150-24

    图  8   不同工艺参数下修复试样HAZ组织形貌

    Figure  8.   Microstructure morphology of HAZ of repaired samples under different process parameters. (a) 300-6; (b) 300-24; (c) 150-6

    图  9   不同工艺参数下修复试样不同区域第二相特征

    Figure  9.   Second phase characteristics in different regions of repaired samples under different process parameters. (a) 150-6 AS-HAZ; (b)150-6 DZ; (c)150-6 RS-HAZ; (d) 300-24 AS-HAZ; (e) 300-6 AS-HAZ

    图  10   不同工艺参数下修复试样局部弱连接缺陷

    Figure  10.   Kissing bonding defect in repaired samples under different process parameters. (a) 150-18 DZ; (b)300-18 DZ; (c) 150-24 DZ; (d) 150-24 groove interface; (e) 300-24 DZ; (f) 300-24 groove interface

    图  11   不同工艺参数修复试样显微硬度分布

    Figure  11.   Microhardness distribution of repaired samples with different process parameters. (a) 150-6; (b) 300-6; (c) 300-24

    图  12   BM和修复试样的拉伸性能

    Figure  12.   Tensile properties of BM and repaired samples. (a) tensile properties of BM and repaired samples; (b) stress-strain curve

    图  13   不同工艺AFSD修复试样断裂位置

    Figure  13.   Fracture location of repaired samples with different process parameters. (a) 300-6; (b) 300-18; (c) 300-24

    图  14   不同工艺AFSD修复试样断口微观形貌

    Figure  14.   Microscopic morphology of fracture surface of AFSD repaired samples with different process parameters. (a) 300-6; (b) 300-18; (c) 300-24

    表  1   6061-T6 化学成分(质量分数,%)

    Table  1   Chemical compositions of 6061-T6

    MgFeCuMnSiTiZnCrAl
    0.900.100.280.120.540.04<0.010.18余量
    下载: 导出CSV

    表  2   6061-T6 力学性能

    Table  2   Mechanical properties of 6061-T6

    抗拉强度Rm/MPa屈服强度Rp/MPa断后伸长率A(%)硬度H/HV
    29926810.5111
    下载: 导出CSV

    表  3   6061-T6铝合金AFSD修复截面宏观组织形貌

    Table  3   Macrostructural morphology of AFSD repair cross section of 6061-T6

    试样编号 修复区截面宏观组织 具体说明
    150-6 无缺陷,原始凹槽界面完全消失
    300-6 无缺陷,原始凹槽界面完全消失
    150-12 无缺陷,原始凹槽界面完全消失
    300-12 无缺陷,原始凹槽界面完全消失
    150-18 局部缺陷,但原始凹槽界面完全消失
    300-18 局部缺陷,但原始凹槽界面完全消失
    150-24 局部缺陷,存在原始凹槽底部痕迹
    300-24 局部缺陷,存在原始凹槽底部痕迹
    下载: 导出CSV
  • [1] 何鹏, 柏兴旺, 周祥曼, 等. MIG电弧增材制造6061铝合金的组织和性能[J]. 焊接学报, 2022, 43(2): 50 − 54,60. doi: 10.12073/j.hjxb.20210608001

    He Peng, Bai Xingwang, Zhou Xiangman, et al. Microstructure and properties of 6061 aluminum alloy by MIG wire and arc additive manufacturing[J]. Transactions of the China Welding Institution, 2022, 43(2): 50 − 54,60. doi: 10.12073/j.hjxb.20210608001

    [2]

    Krishnakumar S , Weidong W. Effect of welding and weld repair on crack propagation behaviour in aluminium alloy 5083 plates[J]. Materials and Design, 2001, 23(2): 201 − 208.

    [3]

    Heidarzadeh A, Mironov S, Kaibyshev R, et al. Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution[J]. Progress in Materials Science, 2020, 11: 7100752.

    [4] 杨新岐, 田超博, 唐文珅, 等. 高强铝合金固相摩擦挤压增材制造工艺及力学性能[J]. 金属加工(热加工), 2022(6): 1 − 9.

    Yang Xinqi, Tian Chaobo, Tang Wenshen, et al. Manufacturing process and mechanical properties of high-strength aluminum alloy solid friction extrusion additive[J]. Metal Processing (Hot Working), 2022(6): 1 − 9.

    [5]

    Williams M B, Robinson T W, Williamson C J, et al. Elucidating the effect of additive friction stir deposition on the resulting microstructure and mechanical properties of magnesium alloy WE43[J]. Metals, 2021, 11(11): 1739.

    [6]

    Avery D Z, Rivera O G, Mason C J T, et al. Fatigue behavior of solid-state additive manufactured inconel 625[J]. The Journal of the Minerals, Metals & Materials Society, 2018, 70(11): 2475 − 2484.

    [7]

    Priyanshi A, Sankar H R, Surekha Y, et al. Processing-structure-property correlation in additive friction stir deposited Ti-6Al-4V alloy from recycled metal chips [J]. Additive Manufacturing, 2021, 47: 102259.

    [8]

    Priedeman J L, Phillips B J, Lopez J J, et al. Microstructure development in additive friction stir-deposited Cu[J]. Metals, 2020, 10(11): 1538.

    [9]

    Griffiths R J, Perry M E J, Sietins J M, et al. A perspective on solid-state additive anufacturing of aluminum matrix composites using MELD[J]. Journal of Materials Engineering and Performance, 2019, 28(2): 648 − 656. doi: 10.1007/s11665-018-3649-3

    [10]

    Xie R, Liang T, Shi Y, et al. Revealing the bonding mechanisms between deposit and substrate of the friction rolling additive manufactured hybrid aluminum alloys[J]. Additive Manufacturing, 2022, 56: 102942.

    [11]

    Griffiths R J, Petersen D T, Garcia D, et al. Additive friction stir-enabled solid-state additive manufacturing for the repair of 7075 aluminum alloy[J]. Applied Sciences, 2019, 9(17): 3486.

    [12]

    Martin L P, Luccitti A, Walluk M. Repair of aluminum 6061 plate by additive friction stir deposition[J]. The International Journal of Advanced Manufacturing Technology, 2022, 118(3): 759 − 773.

    [13]

    Avery D Z, Cleek C E, Phillips B J, et al. Evaluation of microstructure and mechanical properties of Al-Zn-Mg-Cu alloy repaired via additive friction stir deposition[J]. Journal of Engineering Materials and Technology, 2022(3): 1 − 35.

    [14]

    Fernández C M A, Rey R A, Ortega M J C, et al. Friction stir processing strategies to develop a surface composite layer on AA6061-T6[J]. Materials and Manufacturing Processes, 2018, 33(10): 1133 − 1140. doi: 10.1080/10426914.2017.1415447

    [15]

    Ozturk F, Sisman A, Toros S, et al. Influence of aging treatment on mechanical properties of 6061 aluminum alloy[J]. Materials & Design, 2010, 31(2): 972 − 975.

    [16]

    Chakrabarti D J, Laughlin D E. Phase relations and precipitation in Al–Mg–Si alloys with Cu additions[J]. Progress in Materials Science, 2004, 49(3-4): 389 − 410. doi: 10.1016/S0079-6425(03)00031-8

  • 期刊类型引用(6)

    1. 冯消冰,王建军,王永科,陈苏云,刘爱平. 面向大型结构件爬行机器人智能焊接技术. 清华大学学报(自然科学版). 2023(10): 1608-1625 . 百度学术
    2. 詹剑良,金浩哲. 六工位焊接电器盒系统设计. 机械制造文摘(焊接分册). 2022(02): 41-44 . 百度学术
    3. 李建宇,倪川皓,江亚平,贾小磊. 高强钢小角度坡口深熔焊工艺. 机械制造文摘(焊接分册). 2022(05): 26-30 . 百度学术
    4. 周利平,朵丛,韩永刚. 常见焊接接头的机器人焊接工艺设计. 科技视界. 2022(29): 101-103 . 百度学术
    5. 刘云鸾,敖三三,罗震,相茜. 焊接与智能制造(下)——第25届北京·埃森焊接与切割展览会焊接国际论坛综述. 焊接技术. 2021(08): 1-3 . 百度学术
    6. 洪妍,樊星. 北京·埃森焊接展之焊接智能化. 焊接技术. 2021(S1): 78-82 . 百度学术

    其他类型引用(3)

图(14)  /  表(3)
计量
  • 文章访问数:  253
  • HTML全文浏览量:  36
  • PDF下载量:  95
  • 被引次数: 9
出版历程
  • 收稿日期:  2023-08-05
  • 网络出版日期:  2024-06-23
  • 刊出日期:  2024-08-24

目录

/

返回文章
返回