Method and technology of two TIG activating arc additive manufacturing
-
摘要:
为了进一步发挥电弧−丝材增材制造方法高熔敷效率的优势,提出了一种采用双TIG活性电弧作为热源的增材制造方法,利用双TIG电弧并在保护气体中加入少量活性气体氧气,采用直径1.2 mm的SUS304奥氏体不锈钢焊丝进行薄壁件堆积试验,研究了氧的引入、沉积电流分配、电弧移动速度和送丝速度等工艺参数对熔敷层平均宽度和高度的影响,并考察熔敷金属的显微组织和力学性能. 结果表明,与普通TIG电弧相比,双TIG活性电弧增材制造工艺不仅能够改善焊缝成形并提高熔敷效率,而且降低熔敷金属和熔池的表面张力,增强其润湿铺展特性,进一步改善沉积层成形;在电流相当的条件下,与普通TIG电弧沉积相比,沉积效率明显提高,达到2.7 kg/h. 随着后置焊枪沉积电流的增大(前置焊枪沉积电流的减小),墙体宽度先增加后减小,墙体高度的变化与之相反;随着电弧移动速度增加,墙体宽度和高度均下降;当送丝速度增加时,墙体高度明显增加,宽度变化不大. 氧气对墙体熔敷金属微观组织无明显影响,组织形态均为垂直于沉积方向的柱状树枝晶. 沉积墙体的抗拉强度和断后伸长率随着氧气的引入略有下降.
Abstract:To further enhance the high deposition efficiency advantage of wire and arc additive manufacturing, a new technology and method using a two TIG activating arc as the heat source was proposed. By introducing a small amount of activating gas O2 into the argon shielding gas, a thin-wall deposition experiment were conducted and fabricated using 1.2 mm diameter SUS304 austenitic stainless steel metal wire. The effects of oxygen added, deposition current distribution, arc travel speed, and wire feed speed on the average width and height of the deposited bead were studied. The microstructure and mechanical properties of the deposited components were also examined. The results indicate that, compared to the conventional TIG method, the two TIG activating arc additive manufacturing not only improves forming and increases deposition efficiency but also reduces the surface tension of the deposited metal and the molten pool, enhancing their wettability and spreading characteristics, thereby further improving the deposition layer formation. Under comparable current conditions, the deposition efficiency is significantly increased, reaching 2.7 kg/h, compared to the conventional TIG arc deposition. As the deposition current of the trailing torch increases (the leading torch deposition current decreases), the average width first increases and then decreases, while the average height shows an opposite trend. With the increase in arc travel speed, both the average width and height decrease. When the wire feed speed increases, the wall height significantly increases, while the width changes little. The introduction of O2 has no significant impact on the microstructure of the deposited thin-wall component, which is characterized by columnar dendrites perpendicular to the deposition direction. The tensile strength and elongation rate of the deposited thin-wall slightly decrease with the introduction of O2.
-
Keywords:
- two-TIG /
- activating arc /
- additive manufacturing /
- process parameters
-
-
表 1 沉积基本工艺参数
Table 1 Process parameters of deposition process
沉积电流
(I1 + I2)/A前置焊枪氩气流量
Q1/(L·min−1)后置焊枪氩气流量
Q2/(L·min−1)前置焊枪氧气流量
Q3/(L·min−1)钨极间距
d/mm弧长
L/mm电弧移动速度
vT/(mm·s−1)送丝速度
vf/(cm·min−1)层间温度
T/℃钨极尖端角度
θ/(°)200 + 160 15 15 0.1 3 3 10 500 200 60 表 2 图17(d)标识位置EDS结果(质量分数,%)
Table 2 EDS test results of the locations in Fig. 17(d)
位置 元素 O Fe Cr Ni 1 20.95 50.36 21.18 7.51 2 11.46 62.85 19.62 6.06 3 19.88 55.49 18.67 5.97 4 29.20 48.95 17.02 4.83 -
[1] Williams S W, Martina F, Addison A C, et al. Wire + arc additive manufacturing[J]. Materials Science and Technology, 2016, 32(7): 641 − 647. doi: 10.1179/1743284715Y.0000000073
[2] Cunningham C R, Flynn J M, Shokrani A, et al. Invited review article: Strategies and processes for high quality wire arc additive manufacturing[J]. Additive Manufacturing, 2018, 22: 672 − 686. doi: 10.1016/j.addma.2018.06.020
[3] Ouyang J H, Wang H, Kovacevic R. Rapid prototyping of 5356-aluminum alloy based on variable polarity gas tungsten arc welding: Process control and microstructure[J]. Materials and Manufacturing Processes, 2002, 17(1): 103 − 124. doi: 10.1081/AMP-120002801
[4] Zhang Y M, Li P J, Chen Y W, et al. Automated system for welding-based rapid prototyping[J]. Mechatronics, 2002, 12(1): 37 − 53. doi: 10.1016/S0957-4158(00)00064-7
[5] Mathisen M B, Eriksen L, Yingda Y U, et al. Characterization of microstructure and strain response in Ti–6Al–4V plasma welding deposited material by combined EBSD and in-situ tensile test[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(12): 3929 − 3943. doi: 10.1016/S1003-6326(14)63553-6
[6] Shen C, Pan Z X, Cuiuri D, et al. Fabrication of Fe-FeAl functionally graded material using the wire-arc additive manufacturing process[J]. Metallurgical and Materials Transactions B, 2016, 47(1): 763 − 772. doi: 10.1007/s11663-015-0509-5
[7] Wang F, Williams S, Colegrove P, et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2013, 44(2): 968 − 977. doi: 10.1007/s11661-012-1444-6
[8] Bai J Y, Fan C L, Yang C L, et al. Effects of thermal cycles on microstructure evolution of 2219-Al during GTA-additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(9): 2615 − 2623.
[9] Geng H B, Li J L, Xiong J T, et al. Optimization of wire feed for GTAW based additive manufacturing[J]. Journal of Materials Processing Technology, 2017, 243: 40 − 47. doi: 10.1016/j.jmatprotec.2016.11.027
[10] Liu Z Y, He B, Lyu T, et al. A Review on additive manufacturing of titanium alloys for aerospace applications: Directed energy deposition and beyond Ti-6Al-4V[J]. The Journal of the Minerals, Metals & Materials Society, 2021, 73(6): 1804 − 1818.
[11] 吴复尧, 刘黎明, 许沂, 等. 3D打印技术在国外航空航天领域的发展动态[J]. 飞航导弹, 2013(12): 10 − 15. Wu Furao, Liu Liming, Xu Yi, et al. Development trend of 3D printing technology in foreign aerospace field[J]. Aerodynamic Missile Journal, 2013(12): 10 − 15.
[12] 朱胜, 任智强, 殷凤良, 等. 水冷铜阳极法测量阳极等离子电弧力径向分布[J]. 中国表面工程, 2010, 23(5): 82 − 85. doi: 10.3969/j.issn.1007-9289.2010.05.016 Zhu Sheng, Ren Zhiqiang, Yin Fengliang, et al. Measurement of radial distribution of plasma arc anode pressure by water-cooled copper anode method[J]. China Surface Engineering, 2010, 23(5): 82 − 85. doi: 10.3969/j.issn.1007-9289.2010.05.016
[13] 刘伟, 何景山, 吴庆生, 等. 电弧力对TIG焊接熔池液面形态影响的数值模拟[J]. 焊接学报, 2007, 28(7): 69 − 71. doi: 10.3321/j.issn:0253-360X.2007.07.018 Liu Wei, He Jingshan, Wu Qingsheng, et al. Numerical simulation of effect of arc force on shape of liquid surface of TIG welding molten pool[J]. Transactions of the China Welding Institution, 2007, 28(7): 69 − 71. doi: 10.3321/j.issn:0253-360X.2007.07.018
[14] Wang X X, Luo Y, Fan D. Investigation of heat transfer and fluid flow in high current GTA welding by a unified model[J]. International Journal of Thermal Sciences, 2019, 142: 20 − 29. doi: 10.1016/j.ijthermalsci.2019.04.005
[15] Spaniol E, Ungethüm T, Trautmann M, et al. Development of a novel TIG hot-wire process for wire and arc additive manufacturing[J]. Welding in the World, 2020, 64(8): 1329 − 1340. doi: 10.1007/s40194-020-00871-w
[16] Paskual A, Alvarez P, Suarez A. Study on arc welding processes for high deposition rate additive manufacturing[J]. Procedia Cirp, 2018, 68: 358 − 362.
[17] Han Q L, Li D Y, Sun H J, et al. Forming characteristics of additive manufacturing process by twin electrode gas tungsten arc[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(9): 4517 − 4526.
[18] Yilmaz O, Ugla A A. Microstructure characterization of SS308LSi components manufactured by GTAW-based additive manufacturing: shaped metal deposition using pulsed current arc[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89: 13 − 25. doi: 10.1007/s00170-016-9053-y
[19] 王新鑫, 罗怡, 李春天, 等. 双TIG焊接电弧数值分析[J]. 热加工工艺, 2020, 49(7): 133 − 138. Wang Xinxin, Luo Yi, Li Chuntian, et al. Numerical simulation of two TIG welding arc[J]. Hot Working Technology, 2020, 49(7): 133 − 138.
[20] Wang X X, Fan D, Huang J K, et al. A unified model of coupled arc plasma and weld pool for double electrodes TIG welding[J]. Journal of Physics D: Applied Physics, 2014, 47(27): 275202. doi: 10.1088/0022-3727/47/27/275202
[21] 王新鑫, 迟露鑫, 许惠斌, 等. 双TIG电弧中氧传质行为的数值分析[J]. 机械工程学报, 2021, 57(4): 53 − 62. doi: 10.3901/JME.2021.04.053 Wang Xinxin, Chi Luxin, Xu Huibin, et al. Numerical analysis of oxygen mass transfer in two-TIG arc[J]. Journal of Mechanical Engineering, 2021, 57(4): 53 − 62. doi: 10.3901/JME.2021.04.053
[22] Sahoo P, Debroy T, McNallan M J. Surface tension of binary metal—surface active solute systems under conditions relevant to welding metallurgy[J]. Metallurgical Transactions B, 1988, 19(3): 483 − 491. doi: 10.1007/BF02657748
[23] 郭超. 双TIG活性电弧焊接工艺及焊缝成形机理研究[D]. 重庆: 重庆理工大学, 2022. Guo Chao. Research on activating two TIG arc welding and mechanism for weld formation[D]. Chongqing : Chongqing University of Technology, 2022.
[24] 刘黎明, 贺雅净, 李宗玉, 等. 不同路径下316不锈钢电弧增材组织和性能[J]. 焊接学报, 2020, 41(12): 13 − 19. doi: 10.12073/j.hjxb.20200815002 Liu Liming, He Yajing, Li Zongyu, et al. Research on microstructure and mechanical properties of 316 stainless steel fabricated by arc additive manufacturing in different paths[J]. Transactions of the China Welding Institution, 2020, 41(12): 13 − 19. doi: 10.12073/j.hjxb.20200815002
[25] Shankar V, Rao K B S, Mannan S L. Microstructure and mechanical properties of Inconel625 superalloy[J]. Journal of Nuclear Materials, 2001, 288(2-3): 222 − 232. doi: 10.1016/S0022-3115(00)00723-6
[26] Chen X H, Li J, Cheng X, et al. Microstructure and mechanical properties of the austenitic stainless steel 316L fabricated by gas metal arc additive manufacturing[J]. Materials Science and Engineering: A, 2017, 703: 567 − 577. doi: 10.1016/j.msea.2017.05.024
[27] Yadollahi A, Shamsaei N, Thompson S M, et al. Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel[J]. Materials Science and Engineering: A, 2015, 644: 171 − 183. doi: 10.1016/j.msea.2015.07.056
[28] Zhang J X, Huang Y Q, Fan D, et al. Microstructure and performances of dissimilar joints between 12Cr2Mo1R steel and 06Cr18Ni11Ti austenitic stainless steel joined by AA-TIG welding[J]. Journal of Manufacturing Processes, 2020, 60: 96 − 106. doi: 10.1016/j.jmapro.2020.10.048
[29] Laghi V, Palermo M, Tonelli L, et al. Tensile properties and micro-structural features of 304L austenitic stainless steel produced by wire-and-arc additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(9): 3693 − 3705.