高级检索

双TIG活性电弧增材制造方法与工艺

张佳, 邵沛泽, 王新鑫, 黄健康, 樊丁

张佳, 邵沛泽, 王新鑫, 黄健康, 樊丁. 双TIG活性电弧增材制造方法与工艺[J]. 焊接学报, 2024, 45(8): 62-69, 78. DOI: 10.12073/j.hjxb.20230730002
引用本文: 张佳, 邵沛泽, 王新鑫, 黄健康, 樊丁. 双TIG活性电弧增材制造方法与工艺[J]. 焊接学报, 2024, 45(8): 62-69, 78. DOI: 10.12073/j.hjxb.20230730002
ZHANG Jia, SHAO Peize, WANG Xinxin, HUANG Jiankang, FAN Ding. Method and technology of two TIG activating arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 62-69, 78. DOI: 10.12073/j.hjxb.20230730002
Citation: ZHANG Jia, SHAO Peize, WANG Xinxin, HUANG Jiankang, FAN Ding. Method and technology of two TIG activating arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 62-69, 78. DOI: 10.12073/j.hjxb.20230730002

双TIG活性电弧增材制造方法与工艺

基金项目: 国家自然科学基金资助项目(51705054);重庆市教委科学技术研究资助项目(KJQN202101135);重庆理工大学研究生创新项目资助(clgycx20203014).
详细信息
    作者简介:

    张佳,博士研究生;主要从事电弧增材制造方面的研究;Email: 17794432149@163.com

    通讯作者:

    王新鑫,博士,副教授;Email: wang@cqut.edu.cn.

  • 中图分类号: TG 444+.74

Method and technology of two TIG activating arc additive manufacturing

  • 摘要:

    为了进一步发挥电弧−丝材增材制造方法高熔敷效率的优势,提出了一种采用双TIG活性电弧作为热源的增材制造方法,利用双TIG电弧并在保护气体中加入少量活性气体氧气,采用直径1.2 mm的SUS304奥氏体不锈钢焊丝进行薄壁件堆积试验,研究了氧的引入、沉积电流分配、电弧移动速度和送丝速度等工艺参数对熔敷层平均宽度和高度的影响,并考察熔敷金属的显微组织和力学性能. 结果表明,与普通TIG电弧相比,双TIG活性电弧增材制造工艺不仅能够改善焊缝成形并提高熔敷效率,而且降低熔敷金属和熔池的表面张力,增强其润湿铺展特性,进一步改善沉积层成形;在电流相当的条件下,与普通TIG电弧沉积相比,沉积效率明显提高,达到2.7 kg/h. 随着后置焊枪沉积电流的增大(前置焊枪沉积电流的减小),墙体宽度先增加后减小,墙体高度的变化与之相反;随着电弧移动速度增加,墙体宽度和高度均下降;当送丝速度增加时,墙体高度明显增加,宽度变化不大. 氧气对墙体熔敷金属微观组织无明显影响,组织形态均为垂直于沉积方向的柱状树枝晶. 沉积墙体的抗拉强度和断后伸长率随着氧气的引入略有下降.

    Abstract:

    To further enhance the high deposition efficiency advantage of wire and arc additive manufacturing, a new technology and method using a two TIG activating arc as the heat source was proposed. By introducing a small amount of activating gas O2 into the argon shielding gas, a thin-wall deposition experiment were conducted and fabricated using 1.2 mm diameter SUS304 austenitic stainless steel metal wire. The effects of oxygen added, deposition current distribution, arc travel speed, and wire feed speed on the average width and height of the deposited bead were studied. The microstructure and mechanical properties of the deposited components were also examined. The results indicate that, compared to the conventional TIG method, the two TIG activating arc additive manufacturing not only improves forming and increases deposition efficiency but also reduces the surface tension of the deposited metal and the molten pool, enhancing their wettability and spreading characteristics, thereby further improving the deposition layer formation. Under comparable current conditions, the deposition efficiency is significantly increased, reaching 2.7 kg/h, compared to the conventional TIG arc deposition. As the deposition current of the trailing torch increases (the leading torch deposition current decreases), the average width first increases and then decreases, while the average height shows an opposite trend. With the increase in arc travel speed, both the average width and height decrease. When the wire feed speed increases, the wall height significantly increases, while the width changes little. The introduction of O2 has no significant impact on the microstructure of the deposited thin-wall component, which is characterized by columnar dendrites perpendicular to the deposition direction. The tensile strength and elongation rate of the deposited thin-wall slightly decrease with the introduction of O2.

  • 图  1   双TIG活性电弧增材制造示意图

    Figure  1.   Schematic diagram of AT-TIG-AM process

    图  2   焊丝和两钨极的相对位置关系

    Figure  2.   Relative position of welding wire and two tungsten electrodes

    图  3   拉伸试样示意图

    Figure  3.   Schematic diagram of tensile specimen. (a) sampling point; (b) specimen size

    图  4   熔敷金属表面形貌

    Figure  4.   Forming appearance of the deposition beads. (a) TIG-AM; (b) AT-TIG-AM

    图  5   双TIG活性电弧形貌

    Figure  5.   Arc shape of the AT-TIG-AM

    图  6   钨极尖端形貌对比

    Figure  6.   Appearance of the tungsten electrode tip. (a) pre-deposition; (b) post-deposition

    图  7   沉积层表面形貌

    Figure  7.   Forming appearance of the deposition beads

    图  8   沉积层横截面形貌

    Figure  8.   Cross-section appearance of the deposition bead

    图  9   氧气的引入对熔敷层几何尺寸和润湿角的影响

    Figure  9.   Influence of mixing O2 on size of deposition bead and wetting angle

    图  10   沉积电流配比的影响

    Figure  10.   Influence of the deposition current ratio

    图  11   电弧移动速度的影响

    Figure  11.   Influence of the arc travel speed

    图  12   送丝速度的影响

    Figure  12.   Influence of the wire feed speed

    图  13   墙体宏观形貌和横截面形貌

    Figure  13.   Macroscopic morphology of thin-wall and cross-section

    图  14   不同氧气流量沉积墙体不同位置的显微组织

    Figure  14.   Microstructure of the deposited wall under different oxygen flow rate.(a) 0 L/min-top; (b) 0.1 L/min-top; (c) 0 L/min-middle; (d) 0.1 L/min- middle; (e) 0 L/min-bottom; (f) 0.1 L/min- bottom

    图  15   堆积高度对平均显微硬度的影响

    Figure  15.   Influence of deposited height on average micro-hardness

    图  16   拉伸试验结果

    Figure  16.   Tensile test results

    图  17   拉伸断口形貌

    Figure  17.   Tensile fracture morphologies. (a) x-anaerobic; (b) x-aerobic; (c) z-anaerobic; (d) z-aerobic

    表  1   沉积基本工艺参数

    Table  1   Process parameters of deposition process

    沉积电流
    (I1 + I2)/A
    前置焊枪氩气流量
    Q1/(L·min−1)
    后置焊枪氩气流量
    Q2/(L·min−1)
    前置焊枪氧气流量
    Q3/(L·min−1)
    钨极间距
    d/mm
    弧长
    L/mm
    电弧移动速度
    vT/(mm·s−1)
    送丝速度
    vf/(cm·min−1)
    层间温度
    T/℃
    钨极尖端角度
    θ/(°)
    200 + 160 15 15 0.1 3 3 10 500 200 60
    下载: 导出CSV

    表  2   图17(d)标识位置EDS结果(质量分数,%)

    Table  2   EDS test results of the locations in Fig. 17(d)

    位置 元素
    O Fe Cr Ni
    1 20.95 50.36 21.18 7.51
    2 11.46 62.85 19.62 6.06
    3 19.88 55.49 18.67 5.97
    4 29.20 48.95 17.02 4.83
    下载: 导出CSV
  • [1]

    Williams S W, Martina F, Addison A C, et al. Wire + arc additive manufacturing[J]. Materials Science and Technology, 2016, 32(7): 641 − 647. doi: 10.1179/1743284715Y.0000000073

    [2]

    Cunningham C R, Flynn J M, Shokrani A, et al. Invited review article: Strategies and processes for high quality wire arc additive manufacturing[J]. Additive Manufacturing, 2018, 22: 672 − 686. doi: 10.1016/j.addma.2018.06.020

    [3]

    Ouyang J H, Wang H, Kovacevic R. Rapid prototyping of 5356-aluminum alloy based on variable polarity gas tungsten arc welding: Process control and microstructure[J]. Materials and Manufacturing Processes, 2002, 17(1): 103 − 124. doi: 10.1081/AMP-120002801

    [4]

    Zhang Y M, Li P J, Chen Y W, et al. Automated system for welding-based rapid prototyping[J]. Mechatronics, 2002, 12(1): 37 − 53. doi: 10.1016/S0957-4158(00)00064-7

    [5]

    Mathisen M B, Eriksen L, Yingda Y U, et al. Characterization of microstructure and strain response in Ti–6Al–4V plasma welding deposited material by combined EBSD and in-situ tensile test[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(12): 3929 − 3943. doi: 10.1016/S1003-6326(14)63553-6

    [6]

    Shen C, Pan Z X, Cuiuri D, et al. Fabrication of Fe-FeAl functionally graded material using the wire-arc additive manufacturing process[J]. Metallurgical and Materials Transactions B, 2016, 47(1): 763 − 772. doi: 10.1007/s11663-015-0509-5

    [7]

    Wang F, Williams S, Colegrove P, et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2013, 44(2): 968 − 977. doi: 10.1007/s11661-012-1444-6

    [8]

    Bai J Y, Fan C L, Yang C L, et al. Effects of thermal cycles on microstructure evolution of 2219-Al during GTA-additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(9): 2615 − 2623.

    [9]

    Geng H B, Li J L, Xiong J T, et al. Optimization of wire feed for GTAW based additive manufacturing[J]. Journal of Materials Processing Technology, 2017, 243: 40 − 47. doi: 10.1016/j.jmatprotec.2016.11.027

    [10]

    Liu Z Y, He B, Lyu T, et al. A Review on additive manufacturing of titanium alloys for aerospace applications: Directed energy deposition and beyond Ti-6Al-4V[J]. The Journal of the Minerals, Metals & Materials Society, 2021, 73(6): 1804 − 1818.

    [11] 吴复尧, 刘黎明, 许沂, 等. 3D打印技术在国外航空航天领域的发展动态[J]. 飞航导弹, 2013(12): 10 − 15.

    Wu Furao, Liu Liming, Xu Yi, et al. Development trend of 3D printing technology in foreign aerospace field[J]. Aerodynamic Missile Journal, 2013(12): 10 − 15.

    [12] 朱胜, 任智强, 殷凤良, 等. 水冷铜阳极法测量阳极等离子电弧力径向分布[J]. 中国表面工程, 2010, 23(5): 82 − 85. doi: 10.3969/j.issn.1007-9289.2010.05.016

    Zhu Sheng, Ren Zhiqiang, Yin Fengliang, et al. Measurement of radial distribution of plasma arc anode pressure by water-cooled copper anode method[J]. China Surface Engineering, 2010, 23(5): 82 − 85. doi: 10.3969/j.issn.1007-9289.2010.05.016

    [13] 刘伟, 何景山, 吴庆生, 等. 电弧力对TIG焊接熔池液面形态影响的数值模拟[J]. 焊接学报, 2007, 28(7): 69 − 71. doi: 10.3321/j.issn:0253-360X.2007.07.018

    Liu Wei, He Jingshan, Wu Qingsheng, et al. Numerical simulation of effect of arc force on shape of liquid surface of TIG welding molten pool[J]. Transactions of the China Welding Institution, 2007, 28(7): 69 − 71. doi: 10.3321/j.issn:0253-360X.2007.07.018

    [14]

    Wang X X, Luo Y, Fan D. Investigation of heat transfer and fluid flow in high current GTA welding by a unified model[J]. International Journal of Thermal Sciences, 2019, 142: 20 − 29. doi: 10.1016/j.ijthermalsci.2019.04.005

    [15]

    Spaniol E, Ungethüm T, Trautmann M, et al. Development of a novel TIG hot-wire process for wire and arc additive manufacturing[J]. Welding in the World, 2020, 64(8): 1329 − 1340. doi: 10.1007/s40194-020-00871-w

    [16]

    Paskual A, Alvarez P, Suarez A. Study on arc welding processes for high deposition rate additive manufacturing[J]. Procedia Cirp, 2018, 68: 358 − 362.

    [17]

    Han Q L, Li D Y, Sun H J, et al. Forming characteristics of additive manufacturing process by twin electrode gas tungsten arc[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(9): 4517 − 4526.

    [18]

    Yilmaz O, Ugla A A. Microstructure characterization of SS308LSi components manufactured by GTAW-based additive manufacturing: shaped metal deposition using pulsed current arc[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89: 13 − 25. doi: 10.1007/s00170-016-9053-y

    [19] 王新鑫, 罗怡, 李春天, 等. 双TIG焊接电弧数值分析[J]. 热加工工艺, 2020, 49(7): 133 − 138.

    Wang Xinxin, Luo Yi, Li Chuntian, et al. Numerical simulation of two TIG welding arc[J]. Hot Working Technology, 2020, 49(7): 133 − 138.

    [20]

    Wang X X, Fan D, Huang J K, et al. A unified model of coupled arc plasma and weld pool for double electrodes TIG welding[J]. Journal of Physics D: Applied Physics, 2014, 47(27): 275202. doi: 10.1088/0022-3727/47/27/275202

    [21] 王新鑫, 迟露鑫, 许惠斌, 等. 双TIG电弧中氧传质行为的数值分析[J]. 机械工程学报, 2021, 57(4): 53 − 62. doi: 10.3901/JME.2021.04.053

    Wang Xinxin, Chi Luxin, Xu Huibin, et al. Numerical analysis of oxygen mass transfer in two-TIG arc[J]. Journal of Mechanical Engineering, 2021, 57(4): 53 − 62. doi: 10.3901/JME.2021.04.053

    [22]

    Sahoo P, Debroy T, McNallan M J. Surface tension of binary metal—surface active solute systems under conditions relevant to welding metallurgy[J]. Metallurgical Transactions B, 1988, 19(3): 483 − 491. doi: 10.1007/BF02657748

    [23] 郭超. 双TIG活性电弧焊接工艺及焊缝成形机理研究[D]. 重庆: 重庆理工大学, 2022.

    Guo Chao. Research on activating two TIG arc welding and mechanism for weld formation[D]. Chongqing : Chongqing University of Technology, 2022.

    [24] 刘黎明, 贺雅净, 李宗玉, 等. 不同路径下316不锈钢电弧增材组织和性能[J]. 焊接学报, 2020, 41(12): 13 − 19. doi: 10.12073/j.hjxb.20200815002

    Liu Liming, He Yajing, Li Zongyu, et al. Research on microstructure and mechanical properties of 316 stainless steel fabricated by arc additive manufacturing in different paths[J]. Transactions of the China Welding Institution, 2020, 41(12): 13 − 19. doi: 10.12073/j.hjxb.20200815002

    [25]

    Shankar V, Rao K B S, Mannan S L. Microstructure and mechanical properties of Inconel625 superalloy[J]. Journal of Nuclear Materials, 2001, 288(2-3): 222 − 232. doi: 10.1016/S0022-3115(00)00723-6

    [26]

    Chen X H, Li J, Cheng X, et al. Microstructure and mechanical properties of the austenitic stainless steel 316L fabricated by gas metal arc additive manufacturing[J]. Materials Science and Engineering: A, 2017, 703: 567 − 577. doi: 10.1016/j.msea.2017.05.024

    [27]

    Yadollahi A, Shamsaei N, Thompson S M, et al. Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel[J]. Materials Science and Engineering: A, 2015, 644: 171 − 183. doi: 10.1016/j.msea.2015.07.056

    [28]

    Zhang J X, Huang Y Q, Fan D, et al. Microstructure and performances of dissimilar joints between 12Cr2Mo1R steel and 06Cr18Ni11Ti austenitic stainless steel joined by AA-TIG welding[J]. Journal of Manufacturing Processes, 2020, 60: 96 − 106. doi: 10.1016/j.jmapro.2020.10.048

    [29]

    Laghi V, Palermo M, Tonelli L, et al. Tensile properties and micro-structural features of 304L austenitic stainless steel produced by wire-and-arc additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(9): 3693 − 3705.

图(17)  /  表(2)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  22
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-29
  • 网络出版日期:  2024-06-23
  • 刊出日期:  2024-08-24

目录

    /

    返回文章
    返回