高级检索

6061铝合金超声辅助搅拌摩擦焊温度场分析

马付建, 李锡伟, 陈绍, 付典颐, 沙智华, 张生芳

马付建, 李锡伟, 陈绍, 付典颐, 沙智华, 张生芳. 6061铝合金超声辅助搅拌摩擦焊温度场分析[J]. 焊接学报, 2024, 45(8): 41-51. DOI: 10.12073/j.hjxb.20230726001
引用本文: 马付建, 李锡伟, 陈绍, 付典颐, 沙智华, 张生芳. 6061铝合金超声辅助搅拌摩擦焊温度场分析[J]. 焊接学报, 2024, 45(8): 41-51. DOI: 10.12073/j.hjxb.20230726001
MA Fujian, LI Xiwei, CHEN Shao, FU Dianyi, SHA Zhihua, ZHANG Shengfang. Analysis of temperature field of ultrasonic assisted friction stir welding of 6061 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 41-51. DOI: 10.12073/j.hjxb.20230726001
Citation: MA Fujian, LI Xiwei, CHEN Shao, FU Dianyi, SHA Zhihua, ZHANG Shengfang. Analysis of temperature field of ultrasonic assisted friction stir welding of 6061 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 41-51. DOI: 10.12073/j.hjxb.20230726001

6061铝合金超声辅助搅拌摩擦焊温度场分析

基金项目: 国家自然科学基金资助项目(52075066);辽宁省自然科学基金资助项目(2021-MS-295);辽宁省教育厅基本科研项目(JYTMS20230001).
详细信息
    作者简介:

    马付建,博士,教授;主要从事超声辅助及复合加工技术方面的研究;Email: mafj@djtu.edu.cn

    通讯作者:

    张生芳,博士,教授;Email: zsf@djtu.edu.cn.

  • 中图分类号: TG 453.9

Analysis of temperature field of ultrasonic assisted friction stir welding of 6061 aluminum alloy

  • 摘要:

    为了分析超声振动对6061铝合金超声辅助搅拌摩擦焊接过程温度场的影响,采用解析建模和数值模拟的方法,建立了超声辅助搅拌摩擦焊过程中接触界面摩擦系数模型和热力耦合有限元分析模型,开展了6061铝合金超声辅助搅拌摩擦焊温度测量试验,结合有限元与试验结果进行对比分析. 结果表明,仿真得到的工件表面温度分布曲线及取样点温度都与试验结果基本吻合,验证了建立模型的准确性;超声振动可以改变摩擦状态,降低焊接摩擦产热,减少峰值温度及高温区域的面积,振幅对焊接峰值温度影响的显著性高于频率.

    Abstract:

    In order to investigate the influence of ultrasonic vibration on the temperature field of ultrasonic assisted friction stir welding of 6061 aluminum alloy, the contact interface friction coefficient model was established by analytical modeling, and the thermo-mechanical coupling finite element analysis model was established by numerical simulation. The temperature measurement experiment of ultrasonic assisted friction stir welding of 6061 aluminum alloy was carried out. By comparing the finite element analysis with the experimental results, it is found that the workpiece surface temperature distribution curve and sampling point temperature obtained by the analysis are basically consistent with the experimental results, which verifies the accuracy of the established model. The analysis results also show that ultrasonic vibration can change the friction state, reduce the welding friction heat generation, the peak temperature and the area of high temperature region. The effect of ultrasonic amplitude on welding peak temperature is more significant than frequency.

  • 图  1   UAFSW工作原理图

    Figure  1.   Schematic diagram of UAFSW

    图  2   轴肩−工件间相对运动示意图

    Figure  2.   Schematic diagram of relative movement between shoulder and workpiece. (a) actual motion; (b) equivalent motion

    图  3   搅拌针−工件间相对运动示意图

    Figure  3.   Schematic diagram of relative movement between welding pin and workpiece. (a) actual motion; (b) equivalent motion

    图  4   UAFSW热力耦合有限元分析模型

    Figure  4.   Finite element model of UAFSW

    图  5   超声辅助搅拌摩擦焊试验台

    Figure  5.   Test equipment of UAFSW

    图  6   工件温度场

    Figure  6.   Temperature field of workpiece

    图  7   仿真与试验温度对比曲线

    Figure  7.   Comparison curve of simulation and test temperature

    图  8   仿真试验样点温度对比

    Figure  8.   Contrast diagram of temperature at sampling point between simulation and test

    图  9   工件表面温度

    Figure  9.   Surface temperature distribution of workpiece. (a) t = 1 s;(b) t = 3 s;(c) t = 5 s;(d) t = 7 s

    图  10   焊缝内部温度分布

    Figure  10.   Temperature distribution inside the weld. (a) t = 1 s;(b) t = 3 s;(c) t = 5 s;(d) t = 7 s

    图  11   焊接峰值温度随时间变化趋势

    Figure  11.   Peak welding temperature changed with time

    图  12   焊缝表面温度分布曲线

    Figure  12.   Temperature distribution curve of the surface

    图  13   不同振幅下表面温度分布

    Figure  13.   Welding temperature at different amplitude. (a) 0 μm; (b) 10 μm; (c) 15 μm; (d) 20 μm; (e) 25 μm; (f) 30 μm

    图  14   不同振幅下焊缝温度分布

    Figure  14.   Temperature distribution inside the weld at different amplitude. (a) 0 μm; (b) 10 μm; (c) 15 μm; (d) 20 μm; (e) 25 μm; (f) 30 μm

    图  15   振幅对焊接峰值温度的影响曲线

    Figure  15.   Eeffect of amplitude on peak welding temperature

    图  16   不同频率下表面温度分布

    Figure  16.   Welding temperature at different frequency. (a) 0 kHz; (b) 16 kHz; (c) 18 kHz; (d) 20 kHz; (e) 22 kHz; (f) 24 kHz

    图  17   不同频率下的焊缝温度分布

    Figure  17.   Temperature distribution inside the weld at different frequency. (a) 0 kHz; (b) 16 kHz; (c) 18 kHz; (d) 20 kHz; (e) 22 kHz; (f) 24 kHz

    图  18   焊接峰值温度受频率影响曲线

    Figure  18.   Effect of frequency on peak welding temperature

    表  1   6061铝合金物理性能参数

    Table  1   Physical property parameters of 6061 aluminum alloy

    温度
    T/℃
    密度
    ρ/(kg·mm−3)
    比热容
    c/(J·kg−1·K−1)
    热导率
    k /(W·m−1·K−1)
    25.0
    93.3
    204.4
    315.5
    426.7
    500.0
    2700
    2685
    2657
    2630
    2602
    2580
    896
    978
    1028
    1078
    1133
    1160
    167
    177
    192
    207
    223
    244
    下载: 导出CSV

    表  2   本构模型参数

    Table  2   Parameters of constitutive model

    初始屈服应力
    A/MPa
    应变硬化模量
    B/MPa
    材料应变率强化参数
    C
    硬化指数
    q
    热软化系数
    m
    熔点温度
    ${T_{\rm{m}}}$/℃
    参考温度
    $ {T_{\rm{r}}} $/℃
    289.6203.40.0110.351.34652.3720
    下载: 导出CSV

    表  3   UAFSW焊接工艺参数

    Table  3   Welding parameters of UAFSW

    轴肩压入深度H/mm 转速n/(r·min−1) 焊接速度v/(mm·min−1) 环境温度T/℃ 超声频率f / kHz 超声振幅U/μm
    0.1 950 60 20 0,16,18,20,22,24 0,10,15,20,25,30
    下载: 导出CSV
  • [1] 栾国红, 柴鹏. 搅拌摩擦焊接技术应用现状和发展趋势[J]. 金属加工(热加工), 2008(24): 19 − 22.

    Luan Guohong, Chai Peng. FSW technology application and development trend[J]. MW Metal Working, 2008(24): 19 − 22.

    [2] 丁伟, 武传松. 超声振动强化搅拌摩擦焊技术的研究进展[J]. 精密成形工程, 2017, 9(5): 63 − 72.

    Ding Wei, Wu Chuansong. Research progress of ultrasonic vibration enhanced friction stir welding[J]. Journal of Netshape Forming Engineering, 2017, 9(5): 63 − 72.

    [3] 贺地求, 胡雷, 赵志峰, 等. 超声功率对2219-T351铝合金搅拌摩擦焊接头组织与性能的影响[J]. 焊接学报, 2020, 41(3): 23 − 28.

    He Diqiu, Hu Lei, Zhao Zhifeng, et al. Effect of ultrasonic power on microstructure and properties of 2219-T351 aluminum alloy friction stir welding joint[J]. Transactions of the China Welding Institution, 2020, 41(3): 23 − 28.

    [4]

    Ma F J, Fu D Y, Liu Y, et al. The numerical simulation of temperature field in friction stir welding of 7075 aluminium alloy[J]. IOP Conference Series: Materials Science and Engineering, 2020, 751: 012081. doi: 10.1088/1757-899X/751/1/012081

    [5] 赵俊杰, 宿浩, 石磊, 等. 超声功率对UVeFSW铝-镁合金异质接头组织与性能的影响[J]. 机械工程学报, 2020, 56(7): 24 − 32.

    Zhao Junjie, Su Hao, Shi Lei, et al. Effect of exterted ultrasonic power on microstructure and properties of dissimilar Al/Mg alloys UVeFSW joints[J]. Journal of Mechanical Engineering, 2020, 56(7): 24 − 32.

    [6] 任朝晖, 李存旭, 谢吉祥, 等. 超声辅助搅拌摩擦焊温度场及残余应力场分析[J]. 焊接学报, 2018, 39(12): 53 − 57.

    Ren Zhaohui, Li Cunxu, Xie Jixiang, et al. Analysis on temperature field and residual stress field of ultrasonic assisted friction stir welding[J]. Transactions of the China Welding Institution, 2018, 39(12): 53 − 57.

    [7]

    Yang C L, Wu C S, Shi L. Analysis of friction reduction effect due to ultrasonic vibration exerted in friction stir welding[J]. Journal of Manufacturing Processes, 2018, 35: 118 − 126. doi: 10.1016/j.jmapro.2018.07.025

    [8]

    Wang X, Zhang X K, Shi L, et al. Enhancing heat and mass transfer to suppress void defects in friction stir welding by superimposing ultrasonic vibration[J]. Archives of Civil and Mechanical Engineering, 2023, 23: 256. doi: 10.1007/s43452-023-00799-0

    [9]

    Shi L, Chen J, Wu C S, et al. Analysis of heat and mass transfer in ultrasonic vibration-enhanced friction stir welding of 2195 Al-Li alloy[J]. Science and Technology of Welding and Joining, 2021, 26(5): 363 − 370. doi: 10.1080/13621718.2021.1917748

    [10]

    Zhao W Z, Wu C S, Su H. Numerical investigation of heat generation and plastic deformation in ultrasonic assisted friction stir welding[J]. Journal of Manufacturing Processes, 2020, 56: 967 − 980. doi: 10.1016/j.jmapro.2020.05.047

    [11]

    Zhao W Z, Wu C S, S L. The influence of acoustic antifriction on heat generation and material flow in ultrasonic-assisted friction stir welding[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120: 2633 − 2654. doi: 10.1007/s00170-022-08858-1

    [12]

    Simar A, Brechet Y, Meester D B, et al. Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of an aluminum alloy 6005A-T6[J]. Acta Materialia, 2007, 55(18): 6133 − 6143. doi: 10.1016/j.actamat.2007.07.012

    [13] 聂浩, 徐洋, 柯黎明, 等. 转速对厚板铝/镁异种材料搅拌摩擦焊摩擦产热及界面组织的影响[J]. 材料导报, 2023, 37(8): 88 − 93.

    Nie Hao, Xu Yang, Ke Liming, et al. Effect of rotational speed on frictional heat production and interface structure of thick plate Al/Mg dissimilar materials by friction stir welding[J]. Materials Reports, 2023, 37(8): 88 − 93.

    [14]

    Hess D P, Soom A. Normal vibrations and friction under harmonic loads: part Ⅱ-rough planar contacts[J]. Journal of Tribology, 1991, 113(1): 87 − 92. doi: 10.1115/1.2920608

    [15]

    Greenwood J A, Williamson J B P P. Contact of nominally flat surfaces[J]. Proceedings of the Royal Society of London A, 1966, 295(1442): 300 − 319.

    [16] 赵永胜, 牛娜娜, 杨聪彬, 等. 基于多尺度下塑性指数模型的结合面接触刚度计算方法[J]. 振动与冲击, 2022, 41(3): 115 − 122.

    Zhao Yongsheng, Niu Nana, Yang Congbin, et al. Caculation method for contact stiffness of contact surface based on multi-scale plastic index model[J]. Journal of Vibration and Shock, 2022, 41(3): 115 − 122.

    [17]

    Kelly G S, Advani S G, Gillespie J W, et al. A model to characterize acoustic softening during ultrasonic consolidation[J]. Journal of Materials Processing Technology, 2013, 213(12): 1835 − 1845.

    [18]

    Yao Z, Kim G Y, Wang Z, et al. Acoustic softening and residual hardening in aluminum: Modeling and experiments[J]. International Journal of Plasticity, 2012, 39: 75 − 87. doi: 10.1016/j.ijplas.2012.06.003

    [19] 石磊, 武传松. 6061铝合金超声振动强化搅拌摩擦焊接过程的数值模拟[C]//第二十次全国焊接学术会议论文集, 2015: 548-553.

    Shi Lei, Wu Chuansong. 6061 Numerical simulation of aluminum alloy [C]//Proceedings of the 20th National Welding Academic Conference, 2015: 548-553.

    [20] 全国钢标准化技术委员会. 金属材料维氏硬度试验 第1部分: 试验方法, GB/T 4340.1-2009[S]. 北京: 中国标准出版社, 2009.

    Technical Committee on Steel of Standardization Committee of China. Metallic materials vickers hardness test Part 1:Test method, GB/T 4340.1-2009 [S]. Beijing: China Standard Press, 2009.

    [21]

    Budak E, Ozlu E. Development of a thermomechanical cutting process model for machining process simulations[J]. CIRP Annals-Manufacturing Technology, 2008, 57(1): 97 − 100. doi: 10.1016/j.cirp.2008.03.008

    [22]

    Storck H, Littmann W, Wallaschek J, et al. The effect of friction reduction in presence of ultrasonic vibrations and its relevance to travelling wave ultrasonic motors[J]. Ultrasonics, 2002, 40(1-8): 379 − 383. doi: 10.1016/S0041-624X(02)00126-9

    [23] 张正伟, 张昭, 张洪武. 搅拌摩擦焊接残余应力及残余变形数值分析[J]. 计算力学学报, 2013, 30(S1): 16 − 21.

    Zhang Zhengwei, Zhang Zhao, Zhang Hongwu. Investigations on residual stress and residual distortion of friction stir welding[J]. Chinese Journal of Computational Mechanics, 2013, 30(S1): 16 − 21.

    [24] 刘西畅, 李文亚, 高彦军, 等. 铝合金双轴肩搅拌摩擦焊过程材料流动行为[J]. 焊接学报, 2021, 42(3): 48 − 56.

    Liu Xichang, Li Wenya, Gao Yanjun, et al. Material flow behavior during bobbin-tool friction stir welding of aluminum alloy[J]. Transactions of the China Welding Institution, 2021, 42(3): 48 − 56.

    [25] 崔俊华, 柯黎明, 刘文龙, 等. 搅拌摩擦焊接全过程热力耦合有限元模型[J]. 材料工程, 2014(13): 11 − 17.

    Cui Junhua, Ke Liming, Liu Wenlong, et al. Thermo-mechanical coupled finite element model for whole process of friction stir welding[J]. Journal of Materials Engineering, 2014(13): 11 − 17.

    [26]

    Buffa G. Joining Ti6Al4V and AISI 304 through friction stir welding of lap joints: experimental and numerical analysis[J]. International Journal of Material Forming, 2016, 9(1): 59 − 70. doi: 10.1007/s12289-014-1206-7

    [27] 毕然, 何怡刚, 史露强, 等. 基于卡方检验的莱斯信道统计特性可信性评估[J]. 计算机工程与设计, 2019, 40(3): 632 − 637.

    Bi Ran, He Yigang, Shi Luqiang, et al. Credibility evaluation of Rice channel statistics based on chi-square test[J]. Computer Engineering and Design, 2019, 40(3): 632 − 637.

图(18)  /  表(3)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  24
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-25
  • 网络出版日期:  2024-06-06
  • 刊出日期:  2024-08-24

目录

    /

    返回文章
    返回