Microstructures and properties of Zr-4 alloy diffusion bonding joint with Nb interlayer
-
摘要:
为提高Zr-4合金扩散焊接头强度,降低有效连接温度,采用不同厚度的Nb中间层在760 ℃/30 min/7 MPa条件下扩散连接Zr-4合金,分析了Nb中间层的加入及其厚度对接头界面组织和性能的影响. 结果表明, 在扩散连接过程中,界面处Zr和Nb原子相互扩散形成由(Zr, Nb)固溶体构成的扩散层,且扩散层厚度随着中间层厚度的增加基本不变,靠近Nb侧的扩散层中观察到Zr(Cr, Fe)2和Zr(Fe, Nb)2第二相的生成. 在760 ℃条件下,Zr-4合金直接扩散焊接头抗拉强度仅为75 MPa,存在大量未连接区域,添加Nb中间层可显著提高界面结合率,接头抗拉强度达到450 MPa,接头抗拉强度和断后伸长率随着Nb中间层厚度的增加稍有下降,在添加20 μm中间层时最大,分别为450 MPa和13.1%,且断裂位置由Zr-4合金基体(20 μm)转变为界面扩散层(50 μm和80 μm). Zr-4合金扩散焊接头在经历400 ℃,10.3 MPa的过热蒸气腐蚀后,扩散层发生明显腐蚀现象,腐蚀深度最大达到108.39 μm,接头抗拉强度和断后伸长率下降至415 MPa和5.1%,断裂位置在连接界面处,断口中发现Zr(Fe, Nb)2相.
Abstract:To improve the strength of Zr-4 alloy diffusion bonding joints and reduce the effective bonding temperature, different thicknesses of Nb interlayer were used for the Zr-4 alloy diffusion bonding at 760 °C/30 min/7 MPa. The effect of the Nb interlayer and its thickness variation on the microstructures and properties of the joints was investigated. During the diffusion bonding process, the diffusion layer was formed by the mutual diffusion of Zr and Nb, which was composed of (Zr, Nb) solid solution, and its thickness was constant with the increase of the Nb thickness. Secondary phases of Zr(Cr, Fe)2 and Zr(Fe, Nb)2 were observed in the diffusion layer near the Nb interlayer. The tensile strength of the joints was only 75 MPa at 760 ℃ and many unbonded areas existed. The tensile strength and elongation of the joints decreased slightly with the increase of Nb thickness, and reached the maximum of 450 MPa and 13.1%, respectively, with the 20 μm Nb interlayer. The fracture position was changed from the Zr-4 matrix (20 μm) to the diffusion layer (50 μm, 80 μm). After superheated steam corrosion of 400 ℃ and 10.3 MPa, obvious corrosion occurred at the diffusion layer of the Zr-4/Nb/Zr-4 joint. The maximum corrosion depth was 108.39 μm, and the tensile strength and elongation of the joints decreased to 415 MPa and 5.1%. The Zr(Fe, Nb)2 phases were found on the fracture surface.
-
Keywords:
- diffusion bonding /
- Zr-4 alloy /
- Nb interlayer /
- corrosion behavior
-
-
图 3 添加80 μm厚度Nb中间层Zr-4/Nb/Zr-4扩散焊接头界面显微组织
Figure 3. Interface microstructures of Zr-4/Nb/Zr-4 diffusion bonding joint with 80 μm Nb interlayer. (a) low magnification microstructure of the joint; (b) microstructure of one side of the joint; (c) high magnification microstructure of the Zr-4/Nb interface
图 4 Nb中间层厚度对Zr-4/Nb/Zr-4扩散焊接头界面显微组织与成分分布的影响
Figure 4. Influence of Nb interlayer thickness on interface microstructures and content profiles of Zr-4/Nb/Zr-4 diffusion bonding joints. (a) interface microstructures of 20 μm interlayer; (b) interface microstructures of 50 μm interlayer; (c) interface microstructures of 80 μm interlayer;(d) content profiles of 20 μm interlayer;(e) content profiles of 50 μm interlayer; (f) content profiles of 80 μm interlayer
图 7 Nb中间层辅助扩散连接Zr-4接头断口形貌 (50 μm)
Figure 7. Nb interlayer assisted diffusion bonding of Zr-4 joints facture morphologies (50 μm). (a) low magnification fracture morphology; (b) high magnification fracture morphology on b area;(c) high magnification fracture morphology on c area;(d) high magnification fracture morphology on d area
图 10 Nb中间层辅助扩散连接Zr-4接头腐蚀后断口形貌 (20 μm)
Figure 10. Nb interlayer assisted diffusion bonding of Zr-4 joints facture morphologies after corrosion (20 μm). (a) low magnification morphology; (b) high magnification fracture morphology on b area;(c) high magnification fracture morphology on c area;(d) high magnification fracture morphology on d area; (e) high magnification fracture morphology on e area;(f) high magnification fracture morphology on f area
表 1 Zr-4合金的化学成分(质量分数,%)
Table 1 Chemical composition of Zr-4 alloy
Sn Fe Cr Zr 1.5 0.2 0.1 余量 表 2 图3各点的化学成分(原子分数,%)
Table 2 Chemical composition of the points labeled in Fig. 3
位置 Zr Nb Fe Cr Sn 物相 1 61.04 25.53 9.88 2.27 1.26 α-Zr 2 71.31 21.92 4.53 1.63 0.59 (Zr, Nb) 3 69.58 24.22 3.00 1.58 1.62 (Zr, Nb) 表 3 图8和图9中各点的化学成分(原子分数,%)
Table 3 Chemical composition of the points labeled in Fig. 8 and Fig. 9
位置 Zr Nb O Fe Cr Sn 物相 1 36.05 4.85 56.30 1.88 0.43 1.44 ZrO2 2 58.40 11.62 27.18 1.49 0.77 0.54 Zr,ZrO2,NbO2 3 1.82 44.41 52.77 0.57 0.42 0.00 Nb,Nb2O5,NbO2 4 60.89 8.60 27.49 1.11 0.58 1.34 Zr,ZrO2,NbO2 5 34.81 6.55 56.71 0.84 0.53 0.55 ZrO2,NbO2 6 9.39 23.62 63.62 2.60 0.59 0.18 Zr,ZrO2,NbO2 7 76.13 9.13 12.41 0.52 0.45 1.35 Zr基体 -
[1] Yu J J, Wei Z H. Mechanisms of hydride nucleation, growth, reorientation and embrittlement in zirconium: a review[J]. Materials, 2023, 16: 2419. doi: 10.3390/ma16062419
[2] Slobodyan M. Dissimilar welding and brazing of zirconium and its alloys: Methods, parameters, metallurgy and properties of joints[J]. Journal of Manufacturing Processes, 2022, 75: 928 − 1002. doi: 10.1016/j.jmapro.2022.01.026
[3] Slobodyan M S. Arc welding of zirconium and its alloys: A review[J]. Progress in Nuclear Energy, 2021, 133: 103630. doi: 10.1016/j.pnucene.2021.103630
[4] Slobodyan M. Resistance, electron- and laser-beam welding of zirconium alloys for nuclear applications: A review[J]. Nuclear Engineering and Technology, 2021, 53(4): 1049 − 1078. doi: 10.1016/j.net.2020.10.005
[5] 钟建伟, 安军靖, 丁怀博, 等. Zr-Sn-Nb-Fe-Cr与Zr-Nb-Fe锆合金电阻点焊工艺及显微组织[J]. 焊接学报, 2021, 42(8): 82 − 90. doi: 10.12073/j.hjxb.20210305002 Zhong Jianwei, An Junjing, Ding Huaibo, et al. Welding processes and microstructures of weld bead of Zr-Sn-Nb-Fe-Cr and Zr-Nb-Fe zirconium alloy[J]. Transactions of the China Welding Institution, 2021, 42(8): 82 − 90. doi: 10.12073/j.hjxb.20210305002
[6] Lee S Y, Lee H J, Baek J H, et al. Microstructural and corrosion properties of Ti-to-Zr dissimilar alloy joints brazed with a Zr-Ti-Cu-Ni amorphous filler alloy[J]. Metals, 2021, 11: 192. doi: 10.3390/met11020192
[7] Fang J, Qi Q, Sun L B, et al. Brazing SiC ceramic to Zircaloy-4 using Zr-Ni filler alloy: Microstructure, mechanical properties and irradiation behavior[J]. Journal of Nuclear Materials, 2022, 564: 153715. doi: 10.1016/j.jnucmat.2022.153715
[8] Chen H, Long C, Wei T, et al. Effect of Ni interlayer on partial transient liquid phase bonding of Zr–Sn–Nb alloy and 304 stainless steel[J]. Materials & Design, 2014, 60: 358 − 362.
[9] Srikanth V, Laik A, Dey G K, et al. Joining of stainless steel 304L with Zircaloy-4 by diffusion bonding technique using Ni and Ti interlayers[J]. Materials & Design, 2017, 126: 141 − 154.
[10] Sun Z, Ma Y, He Y, et al. Phase transition induced low-temperature diffusion bonding of Zr-4 alloy using a pure Ti interlayer[J]. Journal of Alloys and Compounds, 2023, 947: 169387.
[11] 杨锋, 尉北玲, 王旭峰. 核级锆合金研究现状及我国核级锆材发展方向[J]. 金属世界, 2016(3): 24 − 28. Yang Feng, Wei Beiling, Wang Xufeng. Research advance and future direction of nuclear graded zirconium alloy [J]. Metal World, 2016(3): 24 − 28.
[12] Yang Z W, Zhang F, Yang X, et al. Microstructure and mechanical properties of Zr-4 alloy and 316 stainless steel diffusion bonding joint using Nb/Ni composite interlayer[J]. Advanced Engineering Materials, 2023(25): 2300279.
[13] 陈鑫, 李中奎, 周军, 等. 合金元素对锆合金耐腐蚀性能的影响概述[J]. 热加工工艺, 2015, 44: 14 − 16. Chen Xin, Li Zhongkui, Zhou Jun, et al. Summarizing for effect of alloying elements on corrosion resistance of zirconium alloy [J]. Hot Working Technology, 2015, 44: 14 − 16.
[14] Harte A, Griffiths M, Preuss M, et al. The characterization of second phases in the Zr-Nb and Zr-Nb-Sn-Fe alloys: A critical review[J]. Journal of Nuclear Materials, 2018, 505: 227 − 239. doi: 10.1016/j.jnucmat.2018.03.030
[15] Aldeen A W, Chen Z W, Disher I A, et al. Growth kinetics of second phase particles in N36 zirconium alloy: Zr–Sn–Nb–Fe[J]. Journal of Materials Research and Technology, 2022, 17: 2038 − 2046. doi: 10.1016/j.jmrt.2022.01.142
[16] 焦馥杰. 低组配焊接接头的强度[J]. 山东工学院学报, 1982, 23: 37 − 63. Jiao Fujie. Strength of undermatching welded joint[J]. Journal of Shandong Institute of Technology, 1982, 23: 37 − 63.
[17] Zhou B X, Yao M Y, Li Z K, et al. Optimization of N18 zirconium alloy for fuel cladding of water reactors[J]. Journal of Materials Science & Technology, 2012, 28: 606 − 613.
[18] Yao M, Li S, Zhang X, et al. Effect of Nb on the corrosion resistance of Zr-4 alloy in superheated steam at 500 degreeC[J]. Acta Metallurgica Sinica, 2011, 47: 865 − 871.
[19] 吴悦, 陈兵, 林晓冬, 等. 90Nb-10Zr合金在500 ℃过热蒸气中的腐蚀行为[J]. 稀有金属材料与工程, 2021, 50: 4437 − 4444. Wu Yue, Chen Bing, Lin Xiaodong, et al. Corrosion behavior of 90Nb-10Zr alloy in 500 ℃ super-heated steam[J]. Rare Metal Materials and Engineering, 2021, 50: 4437 − 4444.
[20] Dollins C C, Jursich M. A model for the oxidation of zirconium-based alloys[J]. Journal of Nuclear Materials, 1983, 113: 19 − 24. doi: 10.1016/0022-3115(83)90161-7