高级检索

采用Nb中间层扩散连接Zr-4合金接头界面组织与性能

王瑞萍, 肖宗林, 杨旭, 王泽明, 王颖, 杨振文

王瑞萍, 肖宗林, 杨旭, 王泽明, 王颖, 杨振文. 采用Nb中间层扩散连接Zr-4合金接头界面组织与性能[J]. 焊接学报, 2024, 45(8): 33-40. DOI: 10.12073/j.hjxb.20230720001
引用本文: 王瑞萍, 肖宗林, 杨旭, 王泽明, 王颖, 杨振文. 采用Nb中间层扩散连接Zr-4合金接头界面组织与性能[J]. 焊接学报, 2024, 45(8): 33-40. DOI: 10.12073/j.hjxb.20230720001
WANG Ruiping, XIAO Zonglin, YANG Xu, WANG Zeming, WANG Ying, YANG Zhenwen. Microstructures and properties of Zr-4 alloy diffusion bonding joint with Nb interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 33-40. DOI: 10.12073/j.hjxb.20230720001
Citation: WANG Ruiping, XIAO Zonglin, YANG Xu, WANG Zeming, WANG Ying, YANG Zhenwen. Microstructures and properties of Zr-4 alloy diffusion bonding joint with Nb interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 33-40. DOI: 10.12073/j.hjxb.20230720001

采用Nb中间层扩散连接Zr-4合金接头界面组织与性能

基金项目: 国家自然科学基金资助项目(52174369);天津市自然科学基金(20JCYBJC01300).
详细信息
    作者简介:

    王瑞萍,硕士研究生;主要研究方向为钎焊与扩散焊工艺;Email: wrp@tju.edu.cn

    通讯作者:

    王颖,博士,教授,博士研究生导师;Email: wangycl@tju.edu.cn.

  • 中图分类号: TG 453.9

Microstructures and properties of Zr-4 alloy diffusion bonding joint with Nb interlayer

  • 摘要:

    为提高Zr-4合金扩散焊接头强度,降低有效连接温度,采用不同厚度的Nb中间层在760 ℃/30 min/7 MPa条件下扩散连接Zr-4合金,分析了Nb中间层的加入及其厚度对接头界面组织和性能的影响. 结果表明, 在扩散连接过程中,界面处Zr和Nb原子相互扩散形成由(Zr, Nb)固溶体构成的扩散层,且扩散层厚度随着中间层厚度的增加基本不变,靠近Nb侧的扩散层中观察到Zr(Cr, Fe)2和Zr(Fe, Nb)2第二相的生成. 在760 ℃条件下,Zr-4合金直接扩散焊接头抗拉强度仅为75 MPa,存在大量未连接区域,添加Nb中间层可显著提高界面结合率,接头抗拉强度达到450 MPa,接头抗拉强度和断后伸长率随着Nb中间层厚度的增加稍有下降,在添加20 μm中间层时最大,分别为450 MPa和13.1%,且断裂位置由Zr-4合金基体(20 μm)转变为界面扩散层(50 μm和80 μm). Zr-4合金扩散焊接头在经历400 ℃,10.3 MPa的过热蒸气腐蚀后,扩散层发生明显腐蚀现象,腐蚀深度最大达到108.39 μm,接头抗拉强度和断后伸长率下降至415 MPa和5.1%,断裂位置在连接界面处,断口中发现Zr(Fe, Nb)2相.

    Abstract:

    To improve the strength of Zr-4 alloy diffusion bonding joints and reduce the effective bonding temperature, different thicknesses of Nb interlayer were used for the Zr-4 alloy diffusion bonding at 760 °C/30 min/7 MPa. The effect of the Nb interlayer and its thickness variation on the microstructures and properties of the joints was investigated. During the diffusion bonding process, the diffusion layer was formed by the mutual diffusion of Zr and Nb, which was composed of (Zr, Nb) solid solution, and its thickness was constant with the increase of the Nb thickness. Secondary phases of Zr(Cr, Fe)2 and Zr(Fe, Nb)2 were observed in the diffusion layer near the Nb interlayer. The tensile strength of the joints was only 75 MPa at 760 ℃ and many unbonded areas existed. The tensile strength and elongation of the joints decreased slightly with the increase of Nb thickness, and reached the maximum of 450 MPa and 13.1%, respectively, with the 20 μm Nb interlayer. The fracture position was changed from the Zr-4 matrix (20 μm) to the diffusion layer (50 μm, 80 μm). After superheated steam corrosion of 400 ℃ and 10.3 MPa, obvious corrosion occurred at the diffusion layer of the Zr-4/Nb/Zr-4 joint. The maximum corrosion depth was 108.39 μm, and the tensile strength and elongation of the joints decreased to 415 MPa and 5.1%. The Zr(Fe, Nb)2 phases were found on the fracture surface.

  • 图  1   扩散焊的装配示意图及试样取样示意图

    Figure  1.   Schematic of the diffusion bonding assembly and location of test samples. (a) assemblies; (b) location of the test samples

    图  2   不同温度下Zr-4合金直接扩散焊接头的显微组织

    Figure  2.   Microstructures of Zr-4 alloy diffusion bonding joints at different temperatures. (a) 760 ℃; (b) 780 ℃; (c) 800 ℃

    图  3   添加80 μm厚度Nb中间层Zr-4/Nb/Zr-4扩散焊接头界面显微组织

    Figure  3.   Interface microstructures of Zr-4/Nb/Zr-4 diffusion bonding joint with 80 μm Nb interlayer. (a) low magnification microstructure of the joint; (b) microstructure of one side of the joint; (c) high magnification microstructure of the Zr-4/Nb interface

    图  4   Nb中间层厚度对Zr-4/Nb/Zr-4扩散焊接头界面显微组织与成分分布的影响

    Figure  4.   Influence of Nb interlayer thickness on interface microstructures and content profiles of Zr-4/Nb/Zr-4 diffusion bonding joints. (a) interface microstructures of 20 μm interlayer; (b) interface microstructures of 50 μm interlayer; (c) interface microstructures of 80 μm interlayer;(d) content profiles of 20 μm interlayer;(e) content profiles of 50 μm interlayer; (f) content profiles of 80 μm interlayer

    图  5   Nb中间层厚度对Zr-4/Nb/Zr-4扩散焊接头拉伸性能的影响

    Figure  5.   Influence of Nb interlayer thickness on tensile properties of Zr-4/Nb/Zr-4 diffusion bonding joints

    图  6   Nb中间层辅助扩散连接Zr-4接头断口形貌 (20 μm)

    Figure  6.   Nb interlayer assisted diffusion bonding of Zr-4 joints facture morphologies (20 μm). (a) low magnification fracture morphology; (b) high magnification fracture morphology

    图  7   Nb中间层辅助扩散连接Zr-4接头断口形貌 (50 μm)

    Figure  7.   Nb interlayer assisted diffusion bonding of Zr-4 joints facture morphologies (50 μm). (a) low magnification fracture morphology; (b) high magnification fracture morphology on b area;(c) high magnification fracture morphology on c area;(d) high magnification fracture morphology on d area

    图  8   Nb中间层辅助扩散连接Zr-4接头腐蚀前后界面显微组织 (50 μm)

    Figure  8.   Nb interlayer assisted diffusion bonding of Zr-4 joints microstructures before and after corrosion (50 μm) .(a) before corrosion; (b) after corrosion

    图  9   Nb中间层辅助扩散连接Zr-4接头腐蚀后横截面显微组织 (50 μm)

    Figure  9.   Nb interlayer assisted diffusion bonding of Zr-4 joints cross-section microstructures after corrosion(50 μm). (a) low magnification microstructure; (b) high magnification microstructure

    图  10   Nb中间层辅助扩散连接Zr-4接头腐蚀后断口形貌 (20 μm)

    Figure  10.   Nb interlayer assisted diffusion bonding of Zr-4 joints facture morphologies after corrosion (20 μm). (a) low magnification morphology; (b) high magnification fracture morphology on b area;(c) high magnification fracture morphology on c area;(d) high magnification fracture morphology on d area; (e) high magnification fracture morphology on e area;(f) high magnification fracture morphology on f area

    表  1   Zr-4合金的化学成分(质量分数,%)

    Table  1   Chemical composition of Zr-4 alloy

    SnFeCrZr
    1.50.20.1余量
    下载: 导出CSV

    表  2   图3各点的化学成分(原子分数,%)

    Table  2   Chemical composition of the points labeled in Fig. 3

    位置ZrNbFeCrSn物相
    161.0425.539.882.271.26α-Zr
    271.3121.924.531.630.59(Zr, Nb)
    369.5824.223.001.581.62(Zr, Nb)
    下载: 导出CSV

    表  3   图8和图9中各点的化学成分(原子分数,%)

    Table  3   Chemical composition of the points labeled in Fig. 8 and Fig. 9

    位置ZrNbOFeCrSn物相
    136.054.8556.301.880.431.44ZrO2
    258.4011.6227.181.490.770.54Zr,ZrO2,NbO2
    31.8244.4152.770.570.420.00Nb,Nb2O5,NbO2
    460.898.6027.491.110.581.34Zr,ZrO2,NbO2
    534.816.5556.710.840.530.55ZrO2,NbO2
    69.3923.6263.622.600.590.18Zr,ZrO2,NbO2
    776.139.1312.410.520.451.35Zr基体
    下载: 导出CSV
  • [1]

    Yu J J, Wei Z H. Mechanisms of hydride nucleation, growth, reorientation and embrittlement in zirconium: a review[J]. Materials, 2023, 16: 2419. doi: 10.3390/ma16062419

    [2]

    Slobodyan M. Dissimilar welding and brazing of zirconium and its alloys: Methods, parameters, metallurgy and properties of joints[J]. Journal of Manufacturing Processes, 2022, 75: 928 − 1002. doi: 10.1016/j.jmapro.2022.01.026

    [3]

    Slobodyan M S. Arc welding of zirconium and its alloys: A review[J]. Progress in Nuclear Energy, 2021, 133: 103630. doi: 10.1016/j.pnucene.2021.103630

    [4]

    Slobodyan M. Resistance, electron- and laser-beam welding of zirconium alloys for nuclear applications: A review[J]. Nuclear Engineering and Technology, 2021, 53(4): 1049 − 1078. doi: 10.1016/j.net.2020.10.005

    [5] 钟建伟, 安军靖, 丁怀博, 等. Zr-Sn-Nb-Fe-Cr与Zr-Nb-Fe锆合金电阻点焊工艺及显微组织[J]. 焊接学报, 2021, 42(8): 82 − 90. doi: 10.12073/j.hjxb.20210305002

    Zhong Jianwei, An Junjing, Ding Huaibo, et al. Welding processes and microstructures of weld bead of Zr-Sn-Nb-Fe-Cr and Zr-Nb-Fe zirconium alloy[J]. Transactions of the China Welding Institution, 2021, 42(8): 82 − 90. doi: 10.12073/j.hjxb.20210305002

    [6]

    Lee S Y, Lee H J, Baek J H, et al. Microstructural and corrosion properties of Ti-to-Zr dissimilar alloy joints brazed with a Zr-Ti-Cu-Ni amorphous filler alloy[J]. Metals, 2021, 11: 192. doi: 10.3390/met11020192

    [7]

    Fang J, Qi Q, Sun L B, et al. Brazing SiC ceramic to Zircaloy-4 using Zr-Ni filler alloy: Microstructure, mechanical properties and irradiation behavior[J]. Journal of Nuclear Materials, 2022, 564: 153715. doi: 10.1016/j.jnucmat.2022.153715

    [8]

    Chen H, Long C, Wei T, et al. Effect of Ni interlayer on partial transient liquid phase bonding of Zr–Sn–Nb alloy and 304 stainless steel[J]. Materials & Design, 2014, 60: 358 − 362.

    [9]

    Srikanth V, Laik A, Dey G K, et al. Joining of stainless steel 304L with Zircaloy-4 by diffusion bonding technique using Ni and Ti interlayers[J]. Materials & Design, 2017, 126: 141 − 154.

    [10]

    Sun Z, Ma Y, He Y, et al. Phase transition induced low-temperature diffusion bonding of Zr-4 alloy using a pure Ti interlayer[J]. Journal of Alloys and Compounds, 2023, 947: 169387.

    [11] 杨锋, 尉北玲, 王旭峰. 核级锆合金研究现状及我国核级锆材发展方向[J]. 金属世界, 2016(3): 24 − 28.

    Yang Feng, Wei Beiling, Wang Xufeng. Research advance and future direction of nuclear graded zirconium alloy [J]. Metal World, 2016(3): 24 − 28.

    [12]

    Yang Z W, Zhang F, Yang X, et al. Microstructure and mechanical properties of Zr-4 alloy and 316 stainless steel diffusion bonding joint using Nb/Ni composite interlayer[J]. Advanced Engineering Materials, 2023(25): 2300279.

    [13] 陈鑫, 李中奎, 周军, 等. 合金元素对锆合金耐腐蚀性能的影响概述[J]. 热加工工艺, 2015, 44: 14 − 16.

    Chen Xin, Li Zhongkui, Zhou Jun, et al. Summarizing for effect of alloying elements on corrosion resistance of zirconium alloy [J]. Hot Working Technology, 2015, 44: 14 − 16.

    [14]

    Harte A, Griffiths M, Preuss M, et al. The characterization of second phases in the Zr-Nb and Zr-Nb-Sn-Fe alloys: A critical review[J]. Journal of Nuclear Materials, 2018, 505: 227 − 239. doi: 10.1016/j.jnucmat.2018.03.030

    [15]

    Aldeen A W, Chen Z W, Disher I A, et al. Growth kinetics of second phase particles in N36 zirconium alloy: Zr–Sn–Nb–Fe[J]. Journal of Materials Research and Technology, 2022, 17: 2038 − 2046. doi: 10.1016/j.jmrt.2022.01.142

    [16] 焦馥杰. 低组配焊接接头的强度[J]. 山东工学院学报, 1982, 23: 37 − 63.

    Jiao Fujie. Strength of undermatching welded joint[J]. Journal of Shandong Institute of Technology, 1982, 23: 37 − 63.

    [17]

    Zhou B X, Yao M Y, Li Z K, et al. Optimization of N18 zirconium alloy for fuel cladding of water reactors[J]. Journal of Materials Science & Technology, 2012, 28: 606 − 613.

    [18]

    Yao M, Li S, Zhang X, et al. Effect of Nb on the corrosion resistance of Zr-4 alloy in superheated steam at 500 degreeC[J]. Acta Metallurgica Sinica, 2011, 47: 865 − 871.

    [19] 吴悦, 陈兵, 林晓冬, 等. 90Nb-10Zr合金在500 ℃过热蒸气中的腐蚀行为[J]. 稀有金属材料与工程, 2021, 50: 4437 − 4444.

    Wu Yue, Chen Bing, Lin Xiaodong, et al. Corrosion behavior of 90Nb-10Zr alloy in 500 ℃ super-heated steam[J]. Rare Metal Materials and Engineering, 2021, 50: 4437 − 4444.

    [20]

    Dollins C C, Jursich M. A model for the oxidation of zirconium-based alloys[J]. Journal of Nuclear Materials, 1983, 113: 19 − 24. doi: 10.1016/0022-3115(83)90161-7

图(10)  /  表(3)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  18
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-19
  • 网络出版日期:  2024-06-07
  • 刊出日期:  2024-08-24

目录

    /

    返回文章
    返回