Effect of beam incident angle on weld mechanical properties and melt pool flow behavior in laser deep penetration welding of 304 stainless steel
-
摘要:
在激光深熔焊接中光束倾角会直接影响匙孔形态,光束倾角对熔池流动也具有一定的影响. 采用激光深熔焊接白板试验结合“半三明治”熔池流动直接观测试验,以激光倾角作为变量,研究其对304不锈钢激光深熔焊接焊缝力学性能及熔池流动的影响. 结果表明,在焊缝的力学性能上,不同激光倾角对焊缝上、中部的影响差异性较小,对下部的影响较大,焊缝底部拉伸件出现较多气孔缺陷,正激光入射角下的焊缝抗拉强度和断后伸长率小于负激光入射角. 正激光入射角下“上小下大”的匙孔形貌使其底部易产生涡流,不利于气泡的排出,且匙孔坍塌频率较负激光入射角大,导致熔池稳定性较差,焊缝气孔缺陷的形成概率呈现为正激光入射角高于负激光入射角态势.
Abstract:In laser deep penetration welding, the laser incident angle directly affects the shape of the keyhole, and also has a certain impact on the flow behavior of the molten pool. In this work, bead-on-plate penetration welding experiment combined with "half sandwich" experiment were conducted to study the effect of laser incident angles on weld mechanical properties and melt pool flow. The results show that in terms of the mechanical properties of the weld, the laser incident angle has less impact on the upper and middle parts of the weld, but has a greater impact on the bottom part. There are more pore defects in the tensile samples from the bottom of the weld. Moreover, compared with negative laser incident angle, the tensile strength and elongation of the weld are lower for positive laser incident angle. For positive laser incident angle, the keyhole morphology is of small top and big bottom, makes it easy to generate eddy currents at the bottom and form bubbles. In addition, the keyhole collapse frequency is greater than that at the negative laser incident angle, resulting in poor stability of the molten pool which leads to more pore defects
-
-
表 1 SUS 304奥氏体不锈钢的化学成分(质量分数,%)
Table 1 Chemical composition of SUS 304 austenitic stainless steel
C Mn Si Cr Ni P S Fe ≤0.08 ≤2.0 — 18.2 8.00 ≤0.0.45 ≤0.03 余量 -
[1] 李海波, 李涛, 王鑫林, 等. 倾斜基体对激光熔覆能量分布的影响研究[J]. 应用激光, 2017, 37(3): 333-339. Li Haibo, Li Tao, Wang Xinlin, et al, Study on the influence of the inclined substrate to the energy distribution of laser cladding [J]. Applied Laser, 2017, 37(3): 333-339.
[2] Yang J, Aiyiti W, Jiang H, et al. Evolution of molten pool morphology and prediction of inclined cladding layer morphology[J]. Optics & Laser Technology, 2021, 142: 107164.
[3] Li X, Li T, Shi B, et al. The influence of substrate tilt angle on the morphology of laser cladding layer[J]. Surface and Coatings Technology, 2020, 391: 125706. doi: 10.1016/j.surfcoat.2020.125706
[4] Kumar N, Mukherjee M, Bandyopadhyay A. Study on laser welding of austenitic stainless steel by varying incident angle of pulsed laser beam[J]. Optics & Laser Technology, 2017, 94: 296 − 309.
[5] 王鹏飞, 杨坤, 陈明智, 等. 倾斜基板激光熔覆GH3536熔池形貌的仿真与实验研究[J]. 中国激光, 2021, 48(10): 1002121. Wang Pengfei, Yang Kun, Chen Mingzhi, et al, Simulation and experimental research on the GH3536 molten pool laser cladded on inclined substrate[J]. Chinese Journal of Lasers, 2021, 48(10): 1002121.
[6] Chen C, Shen Y, Gao M, et al. Influence of welding angle on the weld morphology and porosity in laser-arc hybrid welding of AA2219 aluminum alloy[J]. Welding in the World, 2019, 64(1): 37 − 45.
[7] Mei L, Yan D, Chen G, et al. Influence of laser beam incidence angle on laser lap welding quality of galvanized steels[J]. Optics Communications, 2017, 402: 147 − 158. doi: 10.1016/j.optcom.2017.05.032
[8] 高向东, 冯燕柱, 桂晓燕, 等. 激光入射角影响焊接熔池匙孔瞬态行为数值模拟[J]. 机械工程学报, 2020, 56(22): 82 − 89. doi: 10.3901/JME.2020.22.082 Gao Xiangdong, Feng Yanzhu, Gui Xiaoyan, et al. Numerical simulation of effects of laser incident angle on transient behaviors of molten pool and keyhole during laser welding[J]. Journal of Mechanical Engineering, 2020, 56(22): 82 − 89. doi: 10.3901/JME.2020.22.082
[9] Sohail M, Han S-W, Na S-J, et al. Characteristics of weld pool behavior in laser welding with various power inputs[J]. Welding in the World, 2014, 58(3): 269 − 277. doi: 10.1007/s40194-014-0112-4
[10] Lu F, Li X, Li Z, et al. Formation and influence mechanism of keyhole-induced porosity in deep-penetration laser welding based on 3D transient modeling[J]. International Journal of Heat and Mass Transfer, 2015, 90: 1143 − 1152. doi: 10.1016/j.ijheatmasstransfer.2015.07.041
[11] Li X, Lu F, Cui H, et al. Numerical modeling on the formation process of keyhole-induced porosity for laser welding steel with T-joint[J]. The International Journal of Advanced Manufacturing Technology, 2014, 72(1-4): 241 − 254. doi: 10.1007/s00170-014-5609-x
[12] Zhang D, Zhang P, Liu Z, et al. Thermofluid field of molten pool and its effects during selective laser melting (SLM) of Inconel 718 alloy[J]. Additive Manufacturing, 2018, 21: 567 − 578. doi: 10.1016/j.addma.2018.03.031
[13] 李俐群, 郝雨, 彭进. 表面张力对激光深熔焊熔池流动的影响[J]. 焊接学报, 2019, 40(2): 13 − 19,161. Li Liqun, Hao Yu, Peng Jin. Effect of surface tension on molten pool flow in laser deep penetration welding[J]. Transactions of the China Welding Institution, 2019, 40(2): 13 − 19,161.
[14] 付艳恕, 卢聪, 叶小军, 等. 激光材料加工熔池流动行为实验研究进展[J]. 机械工程学报, 2023, 59(5): 291 − 306. doi: 10.3901/JME.2023.05.291 Fu Yanshu, Lu Cong, YE Xiaojun, et al. Review of experimental study on melt pool flow dynamics during laser material processing[J]. Journal of Mechanical Engineering, 2023, 59(5): 291 − 306. doi: 10.3901/JME.2023.05.291
[15] Chen J H, Cao R. 金属解理断裂微观机理[M]. 曹睿译. 北京: 科学出版社, 2018. Chen Jianhong, Cao Rui. Micromechanism of cleavage fracture of metals[M]. Cao Rui, Transl. Beijing: Science Press, 2018.
-
期刊类型引用(2)
1. 李小兵,束长荣,陆立婷,陈程,郑传波,镇凡,麻晗. 不锈钢复合板的焊接工艺研究现状及进展. 中国冶金. 2025(01): 15-31 . 百度学术
2. 杨波,张恩捷. 热泵热水器不锈钢内胆激光焊接工艺应用研究. 日用电器. 2024(08): 147-150 . 百度学术
其他类型引用(0)