高级检索

Cu/V复合中间层对TC4/IN718激光焊接接头组织及性能的影响

朱强, 夏阳, 张星越, 韩柯, 闫耀晶, 丁元毅, 雷玉成

朱强, 夏阳, 张星越, 韩柯, 闫耀晶, 丁元毅, 雷玉成. Cu/V复合中间层对TC4/IN718激光焊接接头组织及性能的影响[J]. 焊接学报, 2024, 45(7): 34-40. DOI: 10.12073/j.hjxb.20230714002
引用本文: 朱强, 夏阳, 张星越, 韩柯, 闫耀晶, 丁元毅, 雷玉成. Cu/V复合中间层对TC4/IN718激光焊接接头组织及性能的影响[J]. 焊接学报, 2024, 45(7): 34-40. DOI: 10.12073/j.hjxb.20230714002
ZHU Qiang, XIA Yang, ZHANG Xingyue, HAN Ke, YAN Yaojing, DING Yuanyi, LEI Yucheng. Effect of Cu/V multi-interlayer on the microstructure and mechanical properties of TC4/IN718 joint by laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 34-40. DOI: 10.12073/j.hjxb.20230714002
Citation: ZHU Qiang, XIA Yang, ZHANG Xingyue, HAN Ke, YAN Yaojing, DING Yuanyi, LEI Yucheng. Effect of Cu/V multi-interlayer on the microstructure and mechanical properties of TC4/IN718 joint by laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 34-40. DOI: 10.12073/j.hjxb.20230714002

Cu/V复合中间层对TC4/IN718激光焊接接头组织及性能的影响

基金项目: 国家自然科学基金资助项目(52205368);特种焊接技术安徽省重点实验室资助项目(2023SW1003)
详细信息
    作者简介:

    朱强,博士,副教授,硕士研究生导师;主要研究方向焊接技术开发与研究; Email: zhuqiang@ujs.edu.cn

    通讯作者:

    韩柯,博士,讲师,硕士研究生导师;主要研究方向异质材料连接、镍基合金高能束焊接及增材制造; Email: hanke@ujs.edu.cn.

  • 中图分类号: TG 456.7

Effect of Cu/V multi-interlayer on the microstructure and mechanical properties of TC4/IN718 joint by laser welding

  • 摘要:

    为了实现TC4钛合金与GH4169镍基高温合金的有效连接.采用Cu/V复合中间层对TC4和IN718合金进行连续激光焊接,并分析添加中间层对接头裂纹、组织及力学性能的影响机制. 结果表明,常规激光焊接时,TC4/IN718接头焊缝区产生大量Ti-Ni脆性金属间化合物,导致接头形成大量纵向裂纹,焊缝组织为Ti(s,s) + Ti2Ni + Ti-Cr + NiTi + Ni3Ti + Cr(s,s). 当采用Cu/V复合中间层后,实现了TC4与IN718合金的有效连接,接头抗拉强度达到271MPa,焊缝组织转变为Ti(s,s) + V(s,s) + NiV3 + Cr(s,s) + Cu(s,s) + 未熔铜.

    Abstract:

    In order to realize the effective connection between TC4 and GH4169 alloy, the Cu/V multi-interlayer was applied to join TC4 and IN718 alloy by continuous laser welding. The regulating mechanism of the Cu/V multi-interlayer on the cracks, microstructure and mechanical properties of TC4/IN718 joint was analyzed. The results show that a large number of Ti-Ni brittle intermetallic compounds are generated in the weld area of TC4/IN718 joint with the conventional laser welding, resulting in the formation of a large number of longitudinal cracks in the joint. The microstructure structure of weld zone in the TC4/IN718 joint is comprised of Ti(s,s) + Ti2Ni + Ti-Cr + NiTi + Ni3Ti + Cr(s,s). When adopting the Cu/V multi-interlayer, the effective joining between TC4 and IN718 alloy is realized, the tensile strength of the joint reaches 271MP. The microstructure structure of weld zone in the TC4/ Cu/V/IN718 joint is transformed into Ti(s,s) + V(s,s) + NiV3 + Cr(s,s) + Cu(s,s) + unmelted copper.

  • 图  1   TC4/IN718激光焊接示意图(mm)

    Figure  1.   Schematic diagram of TC4/IN718 laser welding. (a) the traditional laser welding; (b) the laser welding with interlayer (in mm)

    图  2   拉伸试样尺寸示意图(mm)

    Figure  2.   Schematic diagram of tensile specimen size

    图  3   接头A横截面形貌

    Figure  3.   Cross section morphology of joint A

    图  4   无中间层TC4/IN718焊接接头显微组织

    Figure  4.   Microstructure of TC4/IN718 welded joint without interlayer. (a) near TC4 side; (b) central area; (c) near IN718 side 1; (d) near IN718 side 2

    图  5   V/Cu中间层TC4/IN718接头横截面

    Figure  5.   Cross section of TC4/IN718 joint with V/Cu multi-interlayer

    图  6   Ti/V混合区微观组织

    Figure  6.   SEM image of Ti/V mixed zone

    图  7   纯钒区和V/Cu/Ni区界面微观组织

    Figure  7.   SEM image of the interface between pure vanadium region and V/Cu/Ni region

    图  8   图7线扫描1结果

    Figure  8.   Line Scan 1 Results in Fig.7

    图  9   V/Cu/Ni区和IN718区界面SEM图

    Figure  9.   SEM image of the interface between V/Cu/Ni zone and IN718 zone

    图  10   图9中线扫描2结果

    Figure  10.   Line Scan2 results in Fig.9

    图  11   添加V/Cu中间层TC4/IN718接头断口

    Figure  11.   Fracture surface of TC4/IN718 joint with V/Cu multi-interlayer

    图  12   V/Cu中间层TC4/IN718合金接头拉伸应力位移曲线

    Figure  12.   Tensile stress-strain curve of TC4/IN718 alloy joint V/Cu multi-interlayer

    表  1   TC4合金化学成分(质量分数,%)

    Table  1   Chemical composition of TC4 alloy

    AlVFeCNHOTi
    5.5 ~ 6.83.5 ~ 4.5≤0.30≤0.10≤0.05≤0.015≤0.20余量
    下载: 导出CSV

    表  2   IN718合金化学成分(质量分数,%)

    Table  2   Chemical composition of IN718 alloy

    NiCrMoNbCoAlTiCFe
    50 ~ 5517 ~ 212.8 ~ 3.34.75 ~ 5.5≤1.00.2 ~ 0.80.65 ~ 1.15≤0.08余量
    下载: 导出CSV

    表  3   激光焊接工艺参数

    Table  3   Laser welding process parameters

    接头编号激光功率P/W焊接速度v/(m·s−1)激光束下束位置离焦量d/mm保护气流量L/min
    A15000.012TC4/IN718界面0正面:25
    背面:20
    B15000.012第一道:偏TC4合金且距
    TC4/V界面0.5 mm
    第二道:V/Cu界面0
    下载: 导出CSV

    表  4   无中间层TC4/IN718焊接接头各相化学成分(原子分数,%)

    Table  4   Chemical composition of each phase of TC4/IN718 welded joint without interlayer

    AlMoNbTiCrNi可能相
    A'7.455.3369.511.3010.40Ti(s,s)
    B'2.570.140.0465.172.2929.80Ti2Ni
    C1.690.571.1384.304.118.19Ti(s,s)
    D1.520.961.2628.6015.2052.46Ni3Ti
    E1.413.972.5631.7726.3633.93NiTi + Ti-Cr
    F0.903.650.524.7769.5620.60Cr(s,s)
    下载: 导出CSV

    表  5   Ti/V区相化学成分(原子分数,%)

    Table  5   Chemical composition of phase of Ti/V region

    TiVAl可能相
    G 85.80 7.37 6.83 Ti(s,s)
    下载: 导出CSV

    表  6   V/Cu/Ni区相化学成分(原子分数,%)

    Table  6   Chemical composition of phase of V/Cu/Ni region

    FeMoNbTiCrNiVCu可能相
    H 0.35 0.23 1.85 3.15 88.65 5.77 V(s,s)
    I 6.53 0.42 1.83 2.20 11.16 10.35 66.91 0.60 NiV3
    J 0.16 0.28 8.98 1.94 81.92 Cu(s,s)
    K 100 未熔铜
    下载: 导出CSV

    表  7   接头B断口元素成分分析(原子分数,%)

    Table  7   Chemical composition of each phase of joint B fracture

    VCrFeNiCu可能相
    L5.3594.65Cu(s,s)
    M36.1611.9312.6831.457.77NiV3
    下载: 导出CSV
  • [1] 何思逸, 刘翔宇, 郭双全, 等. SLM成形IN718合金高温持久各向异性影响因素[J]. 焊接学报, 2024, 45(3): 91 − 98 + 134.

    He Siyi, Liu Xiangyu, Guo Shuangquan, et al. Study on factors affecting high temperature anisotropic stress rupture properties of SLM-IN718 alloy[J]. Transactiongs of the China Welding Institution, 2024, 45(3): 91 − 98 + 134.

    [2] 刘世锋, 宋玺, 薛彤, 等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报, 2020, 40(3): 77 − 94.

    Liu Shifeng, Song Xi, Xue Tong, et al. The application and development of titanium alloys and titanium based composites in aerospace[J]. Journal of Aeronautical Materials, 2020, 40(3): 77 − 94.

    [3] 张秉刚, 王一帆, 王厚勤. 先进材料与异种材料电子束焊接研究进展[J]. 焊接学报, 2022, 43(8): 95 − 101 + 119-120.

    Zhang Binggang, Wang Yifan, Wang Houqin. Research status and development trend of electron beam welding for advanced materials and dissimilar materials[J]. Transactiongs of the China Welding Institution, 2022, 43(8): 95 − 101 + 119-120.

    [4] 王廷, 张峰, 李宁, 等. Ti60钛合金/GH3128高温合金电子束焊接头脆裂原因分析[J]. 焊接学报, 2017, 38(12): 19 − 22 + 129-130.

    Wang Ting, Zhang Feng, Li Ning, et al. Analysis of the causes of brittle cracking in electron beam welded joints of Ti60 titanium alloy/GH3128 high-temperature alloy[J]. Transactiongs of the China Welding Institution, 2017, 38(12): 19 − 22 + 129-130.

    [5]

    Nirudhoddi Bhuvi S L, Prasad K Sajun, Vivek Anupam, et al. High strength welds in titanium & nickel based alloys by impact welding−A practical method[J]. Journal of Advanced Joining Processes, 2021, 3: 100056. doi: 10.1016/j.jajp.2021.100056

    [6]

    Chen Huichi, Andrew J Pinkerton, Li Lin. Fibre laser welding of dissimilar alloys of Ti-6Al-4V and Inconel 718 for aerospace applications[J]. The International Journal of Advanced Manufacturing Technology, 2011, 52(9-12): 997 − 987.

    [7]

    Chen Jianyin, Xue Lijue, King Mitch, et al. High power CW YAG laser weldability of dissimilar Ti to Ni metal plates through beam shift[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(1-4): 489 − 501. doi: 10.1007/s00170-019-03870-4

    [8]

    Gao Xiaolong, Liu Jing, Zhang Linjie. Dissimilar metal welding of Ti6Al4V and Inconel 718 through pulsed laser welding-induced eutectic reaction technology[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(1): 1061 − 1071.

    [9]

    Hu Yunfeng, Wu Libin, Zhou Peishan, et al. Fiber laser welding of Ti–6Al–4V to Inconel 718 bimetallic structure via Cu/Ta multi-interlayer[J]. Vacuum, 2021, 192, 110461.

    [10]

    Chatterjee S, Abinandanan T A, Reddy G M, et al. Microstructure formation in dissimilar metal welds: electron beam welding of Ti/Ni[J]. Metallurgical and Materials Transactions, 2016, 47(2): 769 − 776. doi: 10.1007/s11661-015-3255-z

    [11] 吕攀. 不同中间层对钛-钢激光焊接焊缝组织与性能的影响[D]. 南京: 南京理工大学硕士学位论文, 2017.

    Lü Pan. The effect of different intermediate layers on the microstructure and properties of titanium steel laser welding welds[D]. Nanjing: Nanjing University of Technology, 2017.

    [12] 谢志尚. Ti60钛合金与GH3128镍基合金电子束焊接接头组织与性能研究[D]. 哈尔滨: 哈尔滨工业大学硕士学位论文, 2016.

    Xie Zhishang. Study on the microstructure and properties of electron beam welded joints between Ti60 titanium alloy and GH3128 nickel-based alloy[D]. Harbin: Harbin Institute of Technology, 2016.

  • 期刊类型引用(1)

    1. 朱明涛,孟云娜,凡亚丽,卢晨,侯雨珊,倪锋. 粉末烧结Cu-C-SnO_2多孔材料摩擦磨损特性研究. 粉末冶金工业. 2022(01): 36-44 . 百度学术

    其他类型引用(1)

图(12)  /  表(7)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  40
  • PDF下载量:  26
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-07-13
  • 网络出版日期:  2024-05-12
  • 刊出日期:  2024-07-24

目录

    /

    返回文章
    返回