Effect of Cu/V multi-interlayer on the microstructure and mechanical properties of TC4/IN718 joint by laser welding
-
摘要:
为了实现TC4钛合金与GH4169镍基高温合金的有效连接.采用Cu/V复合中间层对TC4和IN718合金进行连续激光焊接,并分析添加中间层对接头裂纹、组织及力学性能的影响机制. 结果表明,常规激光焊接时,TC4/IN718接头焊缝区产生大量Ti-Ni脆性金属间化合物,导致接头形成大量纵向裂纹,焊缝组织为Ti(s,s) + Ti2Ni + Ti-Cr + NiTi + Ni3Ti + Cr(s,s). 当采用Cu/V复合中间层后,实现了TC4与IN718合金的有效连接,接头抗拉强度达到271MPa,焊缝组织转变为Ti(s,s) + V(s,s) + NiV3 + Cr(s,s) + Cu(s,s) + 未熔铜.
-
关键词:
- TC4/IN718异种金属 /
- 激光焊 /
- 复合中间层 /
- 微观组织 /
- 力学性能
Abstract:In order to realize the effective connection between TC4 and GH4169 alloy, the Cu/V multi-interlayer was applied to join TC4 and IN718 alloy by continuous laser welding. The regulating mechanism of the Cu/V multi-interlayer on the cracks, microstructure and mechanical properties of TC4/IN718 joint was analyzed. The results show that a large number of Ti-Ni brittle intermetallic compounds are generated in the weld area of TC4/IN718 joint with the conventional laser welding, resulting in the formation of a large number of longitudinal cracks in the joint. The microstructure structure of weld zone in the TC4/IN718 joint is comprised of Ti(s,s) + Ti2Ni + Ti-Cr + NiTi + Ni3Ti + Cr(s,s). When adopting the Cu/V multi-interlayer, the effective joining between TC4 and IN718 alloy is realized, the tensile strength of the joint reaches 271MP. The microstructure structure of weld zone in the TC4/ Cu/V/IN718 joint is transformed into Ti(s,s) + V(s,s) + NiV3 + Cr(s,s) + Cu(s,s) + unmelted copper.
-
-
表 1 TC4合金化学成分(质量分数,%)
Table 1 Chemical composition of TC4 alloy
Al V Fe C N H O Ti 5.5 ~ 6.8 3.5 ~ 4.5 ≤0.30 ≤0.10 ≤0.05 ≤0.015 ≤0.20 余量 表 2 IN718合金化学成分(质量分数,%)
Table 2 Chemical composition of IN718 alloy
Ni Cr Mo Nb Co Al Ti C Fe 50 ~ 55 17 ~ 21 2.8 ~ 3.3 4.75 ~ 5.5 ≤1.0 0.2 ~ 0.8 0.65 ~ 1.15 ≤0.08 余量 表 3 激光焊接工艺参数
Table 3 Laser welding process parameters
接头编号 激光功率P/W 焊接速度v/(m·s−1) 激光束下束位置 离焦量d/mm 保护气流量L/min A 1500 0.012 TC4/IN718界面 0 正面:25
背面:20B 1500 0.012 第一道:偏TC4合金且距
TC4/V界面0.5 mm第二道:V/Cu界面 0 表 4 无中间层TC4/IN718焊接接头各相化学成分(原子分数,%)
Table 4 Chemical composition of each phase of TC4/IN718 welded joint without interlayer
相 Al Mo Nb Ti Cr Ni 可能相 A' 7.45 5.33 — 69.51 1.30 10.40 Ti(s,s) B' 2.57 0.14 0.04 65.17 2.29 29.80 Ti2Ni C 1.69 0.57 1.13 84.30 4.11 8.19 Ti(s,s) D 1.52 0.96 1.26 28.60 15.20 52.46 Ni3Ti E 1.41 3.97 2.56 31.77 26.36 33.93 NiTi + Ti-Cr F 0.90 3.65 0.52 4.77 69.56 20.60 Cr(s,s) 表 5 Ti/V区相化学成分(原子分数,%)
Table 5 Chemical composition of phase of Ti/V region
相 Ti V Al 可能相 G 85.80 7.37 6.83 Ti(s,s) 表 6 V/Cu/Ni区相化学成分(原子分数,%)
Table 6 Chemical composition of phase of V/Cu/Ni region
Fe Mo Nb Ti Cr Ni V Cu 可能相 H — 0.35 0.23 — 1.85 3.15 88.65 5.77 V(s,s) I 6.53 0.42 1.83 2.20 11.16 10.35 66.91 0.60 NiV3 J — 0.16 — 0.28 — 8.98 1.94 81.92 Cu(s,s) K — — — — — — — 100 未熔铜 表 7 接头B断口元素成分分析(原子分数,%)
Table 7 Chemical composition of each phase of joint B fracture
V Cr Fe Ni Cu 可能相 L 5.35 — — — 94.65 Cu(s,s) M 36.16 11.93 12.68 31.45 7.77 NiV3 -
[1] 何思逸, 刘翔宇, 郭双全, 等. SLM成形IN718合金高温持久各向异性影响因素[J]. 焊接学报, 2024, 45(3): 91 − 98 + 134. He Siyi, Liu Xiangyu, Guo Shuangquan, et al. Study on factors affecting high temperature anisotropic stress rupture properties of SLM-IN718 alloy[J]. Transactiongs of the China Welding Institution, 2024, 45(3): 91 − 98 + 134.
[2] 刘世锋, 宋玺, 薛彤, 等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报, 2020, 40(3): 77 − 94. Liu Shifeng, Song Xi, Xue Tong, et al. The application and development of titanium alloys and titanium based composites in aerospace[J]. Journal of Aeronautical Materials, 2020, 40(3): 77 − 94.
[3] 张秉刚, 王一帆, 王厚勤. 先进材料与异种材料电子束焊接研究进展[J]. 焊接学报, 2022, 43(8): 95 − 101 + 119-120. Zhang Binggang, Wang Yifan, Wang Houqin. Research status and development trend of electron beam welding for advanced materials and dissimilar materials[J]. Transactiongs of the China Welding Institution, 2022, 43(8): 95 − 101 + 119-120.
[4] 王廷, 张峰, 李宁, 等. Ti60钛合金/GH3128高温合金电子束焊接头脆裂原因分析[J]. 焊接学报, 2017, 38(12): 19 − 22 + 129-130. Wang Ting, Zhang Feng, Li Ning, et al. Analysis of the causes of brittle cracking in electron beam welded joints of Ti60 titanium alloy/GH3128 high-temperature alloy[J]. Transactiongs of the China Welding Institution, 2017, 38(12): 19 − 22 + 129-130.
[5] Nirudhoddi Bhuvi S L, Prasad K Sajun, Vivek Anupam, et al. High strength welds in titanium & nickel based alloys by impact welding−A practical method[J]. Journal of Advanced Joining Processes, 2021, 3: 100056. doi: 10.1016/j.jajp.2021.100056
[6] Chen Huichi, Andrew J Pinkerton, Li Lin. Fibre laser welding of dissimilar alloys of Ti-6Al-4V and Inconel 718 for aerospace applications[J]. The International Journal of Advanced Manufacturing Technology, 2011, 52(9-12): 997 − 987.
[7] Chen Jianyin, Xue Lijue, King Mitch, et al. High power CW YAG laser weldability of dissimilar Ti to Ni metal plates through beam shift[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(1-4): 489 − 501. doi: 10.1007/s00170-019-03870-4
[8] Gao Xiaolong, Liu Jing, Zhang Linjie. Dissimilar metal welding of Ti6Al4V and Inconel 718 through pulsed laser welding-induced eutectic reaction technology[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(1): 1061 − 1071.
[9] Hu Yunfeng, Wu Libin, Zhou Peishan, et al. Fiber laser welding of Ti–6Al–4V to Inconel 718 bimetallic structure via Cu/Ta multi-interlayer[J]. Vacuum, 2021, 192, 110461.
[10] Chatterjee S, Abinandanan T A, Reddy G M, et al. Microstructure formation in dissimilar metal welds: electron beam welding of Ti/Ni[J]. Metallurgical and Materials Transactions, 2016, 47(2): 769 − 776. doi: 10.1007/s11661-015-3255-z
[11] 吕攀. 不同中间层对钛-钢激光焊接焊缝组织与性能的影响[D]. 南京: 南京理工大学硕士学位论文, 2017. Lü Pan. The effect of different intermediate layers on the microstructure and properties of titanium steel laser welding welds[D]. Nanjing: Nanjing University of Technology, 2017.
[12] 谢志尚. Ti60钛合金与GH3128镍基合金电子束焊接接头组织与性能研究[D]. 哈尔滨: 哈尔滨工业大学硕士学位论文, 2016. Xie Zhishang. Study on the microstructure and properties of electron beam welded joints between Ti60 titanium alloy and GH3128 nickel-based alloy[D]. Harbin: Harbin Institute of Technology, 2016.
-
期刊类型引用(1)
1. 朱明涛,孟云娜,凡亚丽,卢晨,侯雨珊,倪锋. 粉末烧结Cu-C-SnO_2多孔材料摩擦磨损特性研究. 粉末冶金工业. 2022(01): 36-44 . 百度学术
其他类型引用(1)