高级检索

铝合金高频振荡扫描激光−电弧复合焊缝成形规律与预测

苗晓军, 韩丽娟, 李凯, 王磊, 姜来合格, 廖伟, 高明

苗晓军, 韩丽娟, 李凯, 王磊, 姜来合格, 廖伟, 高明. 铝合金高频振荡扫描激光−电弧复合焊缝成形规律与预测[J]. 焊接学报, 2024, 45(7): 83-91. DOI: 10.12073/j.hjxb.20230711002
引用本文: 苗晓军, 韩丽娟, 李凯, 王磊, 姜来合格, 廖伟, 高明. 铝合金高频振荡扫描激光−电弧复合焊缝成形规律与预测[J]. 焊接学报, 2024, 45(7): 83-91. DOI: 10.12073/j.hjxb.20230711002
MIAO Xiaojun, HAN Lijuan, LI Kai, WANG Lei, JIANG Laihege, LIAO Wei, GAO Ming. Formation law and prediction of weld morphology for high-frequency oscillating laser-arc hybrid welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 83-91. DOI: 10.12073/j.hjxb.20230711002
Citation: MIAO Xiaojun, HAN Lijuan, LI Kai, WANG Lei, JIANG Laihege, LIAO Wei, GAO Ming. Formation law and prediction of weld morphology for high-frequency oscillating laser-arc hybrid welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 83-91. DOI: 10.12073/j.hjxb.20230711002

铝合金高频振荡扫描激光−电弧复合焊缝成形规律与预测

基金项目: 平高集团有限公司科技项目资助(5291BG220001)
详细信息
    作者简介:

    苗晓军,本科,工程师;主要研究方向为金属材料成形;Email: miaoxj519@126.com

    通讯作者:

    高明,博士,教授;Email: mgao@mail.hust.edu.cn.

  • 中图分类号: TG 456.7

Formation law and prediction of weld morphology for high-frequency oscillating laser-arc hybrid welding of aluminum alloy

  • 摘要:

    高频振荡扫描激光−电弧复合焊接能够通过扫描搅拌效应调控铝合金焊缝微观组织及其力学性能,但是在控形方面还鲜有研究,无法为工业应用提供理论支撑. 为此,系统研究了激光束扫描振幅A和频率f对AA6082铝合金激光−电弧复合焊缝成形特征的影响规律,包括焊缝表面飞溅、焊缝下部激光区宽度和熔深占比,并基于光束扫描的能量分布特征和激光焊接模式转变行为,探讨了焊缝形貌转变机理. 随后,根据焊缝成形缺陷数量和激光深熔焊模式进一步确定了激光束扫描参数的优化区间范围,具体为0.4 mm≤A≤1.0 mm和300 Hz≤f≤500 Hz. 最后,通过对光束扫描参量的线速度归一化处理,建立了优化参数区间内的焊缝特征值的线性定量关系,精度达到89.8%,为高频振荡扫描激光−电弧复合焊缝形貌特征的预测与调控提供了数据支撑.

    Abstract:

    High-frequency oscillating laser-arc hybrid welding has been shown to control the microstructure and mechanical properties of the weld in aluminum alloy through the stirring effect. However, there is limited research on weld morphology control, thus hindering its industrial application. In this study, the effects of laser beam oscillating frequency (f) and amplitude (A) on the formation characteristics of laser-arc hybrid welding of AA6082 aluminum alloy were systematically investigated, particularly focusing on the influence of surface spatters, the width of the laser-affected zone beneath the weld, and the ratio of penetration depth. The formation mechanism of weld morphology was discussed based on the energy distribution characteristics of the oscillating laser beam and the transition of the laser welding mode. Subsequently, the optimization range of the oscillating parameters was determined based on the number of weld formation defects and the laser deep penetration welding mode, specifically within the range of 300 Hz ≤ f ≤ 500 Hz and 0.4 mm ≤ A ≤ 1.0 mm. Finally, by normalizing the oscillating parameters with the oscillating line velocity, a linear quantitative relationship between the characteristic values of the weld within the optimized parameter range was established with an accuracy of 89.8%, providing data support for the prediction and control of the morphological characteristics of high-frequency oscillating laser-arc hybrid welding.

  • 图  1   焊缝成形特征参量的定义

    Figure  1.   Definition of characteristic parameters for weld morphology. (a) surface; (b) cross-section

    图  2   不同扫描振幅的典型焊缝表面形貌(f=300 Hz)

    Figure  2.   Typical surface morphology of weld with different oscillating amplitude (f=300 Hz). (a) 0.2 mm; (b) 0.4 mm; (c) 0.6 mm; (d) 1.0 mm; (e) 1.5 mm; (f) 2.5 mm

    图  3   不同扫描频率的典型焊缝表面形貌(A=0.6 mm)

    Figure  3.   Typical surface morphology of weld with different oscillating frequency (A=0.6 mm). (a) 10 Hz; (b) 50 Hz; (c) 100 Hz; (d) 200 Hz; (e) 300 Hz; (f) 500 Hz

    图  4   扫描振幅与频率对焊缝表面飞溅的影响

    Figure  4.   Effect of oscillating amplitude and frequency on the spatter of weld surface. (a) number of large splatters; (b) width of small splatter zone

    图  5   不同扫描振幅和频率下的的典型焊缝截面形貌

    Figure  5.   Typical section morphology of joints welded with different oscillating amplitude and frequency

    图  6   扫描振幅和频率对焊缝截面整体形貌的影响

    Figure  6.   Effect of oscillating amplitude and frequency on the overall morphology of the weld cross-section. (a) penetration depth; (b) weld width

    图  7   扫描振幅和频率对焊缝截面激光区形貌的影响

    Figure  7.   Effect of oscillating amplitude and frequency on the morphology of the laser zone in the weld cross-section. (a) penetration depth ratio of the laser zone; (b) weld width of the laser zone

    图  8   不同扫描参量下的激光束能量分布特征

    Figure  8.   Energy distribution of laser beam at various oscillating parameters. (a) A=0.6 mm, f=10 Hz; (b) A=0.6 mm, f=300 Hz; (c) A=1.5 mm, f=300 Hz

    图  9   激光扫描线速度与熔深和熔宽的拟合关系

    Figure  9.   Fitting relationship between laser oscillating speed and penetration depth and weld width. (a) penetration depth; (b) weld width

    图  10   激光扫描线速度与激光区熔深占比和激光区熔宽的拟合关系

    Figure  10.   Fitting relationship between laser oscillating speed and the penetration depth ratio of the laser zone and the weld width of the laser zone. (a) penetration depth ratio of the laser zone; (b) weld width of the laser zone

    表  1   焊接材料的化学成分(质量分数,%)

    Table  1   Chemical compositions of welding materials

    材料SiFeCuMnMgCrZnTiZrAl
    AA60821.000.500.100.700.900.250.200.10余量
    ER50870.040.140.010.754.760.0070.010.050.11余量
    下载: 导出CSV

    表  2   焊接工艺参数

    Table  2   Process parameters of welding

    激光功率P/W焊接电流I/A焊接速度vw/(m·min−1)离焦量Δf/mm光丝间距DLA/mm扫描振幅A/mm扫描频率f/Hz
    50002002030.2~2.510~500
    下载: 导出CSV
  • [1]

    Heinz A, Haszler A, Keidel C, et al. Recent development in aluminium alloys for aerospace applications[J]. Materials Science and Engineering: A, 2000, 280(1): 102 − 107. doi: 10.1016/S0921-5093(99)00674-7

    [2] 周立涛, 王旭友, 王威, 等. 激光扫描焊接工艺对铝合金焊接气孔率的影响[J]. 焊接学报, 2014, 35(10): 65 − 68.

    Zhou Litao, Wang Xuyou, Wang Wei, et al. Effects of laser scanning welding process on porosity rate of aluminum alloy[J]. Transactions of the China Welding Institution, 2014, 35(10): 65 − 68.

    [3]

    Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys[J]. Materials and Design, 2014, 56: 862 − 871. doi: 10.1016/j.matdes.2013.12.002

    [4] 刘军, 孟宪国, 李晨曦, 等. 2219-T651铝合金激光摆动焊接接头微观组织和力学性能[J]. 焊接学报, 2023, 44(4): 7 − 13. doi: 10.12073/j.hjxb.20220507001

    Liu Jun, Meng Xianguo, Li Chenxi, et al. Microstructure and properties of 2219-T651 aluminum alloy welded joint by laser oscillating welding[J]. Transactions of the China Welding Institution, 2023, 44(4): 7 − 13. doi: 10.12073/j.hjxb.20220507001

    [5]

    Liu T, Mu Z, Hu R, et al. Sinusoidal oscillating laser welding of 7075 aluminum alloy: Hydrodynamics, porosity formation and optimization[J]. International Journal of Heat and Mass Transfer, 2019, 140: 346 − 358. doi: 10.1016/j.ijheatmasstransfer.2019.05.111

    [6] 余世文, 周昆, 张威, 等. 6.0mm厚5183铝合金激光摆动焊接工艺研究[J]. 激光技术, 2018, 42(2): 254 − 258. doi: 10.7510/jgjs.issn.1001-3806.2018.02.022

    Yu Shiwen, Zhou Kun, Zhang Wei, et al. Laser-weaving welding of 5183 aluminum alloy plate with 6.0mm thickness[J]. Laser Technology, 2018, 42(2): 254 − 258. doi: 10.7510/jgjs.issn.1001-3806.2018.02.022

    [7]

    Fetzer F, Sommer M, Weber R, et al. Reduction of pores by means of laser beam oscillation during remote welding of AlMgSi[J]. Optics and Lasers in Engineering, 2018, 108: 68 − 77. doi: 10.1016/j.optlaseng.2018.04.012

    [8]

    Berend O, Haferkamp H, Meier O, et al. High-frequency beam oscillating to increase the process stability during laser welding with high melt pool dynamics[C]//International Congress on Applications of Lasers & Electro-Optics. AIP Publishing, 2005: 1032 − 1041.

    [9]

    Hagenlocher C, Sommer M, Fetzer F, et al. Optimization of the solidification conditions by means of beam oscillation during laser beam welding of aluminum[J]. Materials & Design, 2018, 160: 1178 − 1185.

    [10]

    Schultz V, Seefeld T, Vollertsen F. Gap bridging ability in laser beam welding of thin aluminum sheets[J]. Physics Procedia, 2014, 56: 545 − 553. doi: 10.1016/j.phpro.2014.08.037

    [11]

    Wang L, Liu Y, Yang C, et al. Study of porosity suppression in oscillating laser-MIG hybrid welding of AA6082 aluminum alloy[J]. Journal of Materials Processing Technology, 2021, 292: 117053. doi: 10.1016/j.jmatprotec.2021.117053

    [12]

    Cai C, Li L, Tao W, et al. Effects of weaving laser on scanning laser-MAG hybrid welding characteristics of high-strength steel[J]. Science and Technology of Welding and Joining, 2017, 22(2): 104 − 109. doi: 10.1080/13621718.2016.1199126

    [13]

    Chen C, Xiang Y, Gao M. Weld formation mechanism of fiber laser oscillating welding of dissimilar aluminum alloys[J]. Journal of Manufacturing Processes, 2020, 60: 180 − 187. doi: 10.1016/j.jmapro.2020.10.050

    [14]

    Meng Y, Lu Y, Li Z, et al. Effects of beam oscillation on interface layer and mechanical properties of laser-arc hybrid lap welded Al/Mg dissimilar metals[J]. Intermetallics, 2021, 133: 1 − 8.

    [15]

    Wang Z, Oliveira J P, Zeng Z, et al. Laser beam oscillating welding of 5A06 aluminum alloys: Microstructure, porosity and mechanical properties[J]. Optics & Laser Technology, 2019, 111: 58 − 65.

    [16]

    Hao K, Li G, Gao M, et al. Weld formation mechanism of fiber laser oscillating welding of austenitic stainless steel[J]. Journal of Materials Processing Technology, 2015, 225: 77 − 83. doi: 10.1016/j.jmatprotec.2015.05.021

    [17]

    Wang L, Gao M, Zeng X. Experiment and prediction of weld morphology for laser oscillating welding of AA6061 aluminium alloy[J]. Science and Technology of Welding and Joining, 2019, 24(4): 334 − 341. doi: 10.1080/13621718.2018.1551853

    [18]

    Ono M, Shinbo Y, Yoshitake A, et al. Development of laser-arc hybrid welding[J]. NKK Technical Review, 2002, 86: 70 − 74.

    [19]

    Acherjee B. Hybrid laser arc welding: State-of-art review[J]. Optics & Laser Technology, 2018, 99: 60 − 71.

    [20]

    Zhang C, Gao M, Wang D Zh, et al. Relationship between pool characteristic and weld porosity in laser arc hybrid welding of AA6082 aluminum alloy[J]. Journal of Materials Processing Technology, 2017, 240: 217 − 222. doi: 10.1016/j.jmatprotec.2016.10.001

    [21]

    Mahrle A, Beyer E. Modelling and simulation of the energy deposition in laser beam welding with oscillatory beam deflection[C]//Proceedings of the 26th International Congress on Applications of Lasers & Electro-Optics. LIA Publishing, 2007: 714 − 723.

    [22]

    Zhang C, Yu Y, Chen C, et al. Suppressing porosity of a laser keyhole welded Al-6Mg alloy via beam oscillation[J]. Journal of Materials Processing Technology, 2020, 278: 116382. doi: 10.1016/j.jmatprotec.2019.116382

  • 期刊类型引用(1)

    1. 丁业立,牛红伟,刘多,刘积厚,雷玉珍. K9玻璃与2507不锈钢的真空钎焊. 焊接. 2019(01): 1-4+11+65 . 百度学术

    其他类型引用(1)

图(10)  /  表(2)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  24
  • PDF下载量:  26
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-07-10
  • 网络出版日期:  2024-05-23
  • 刊出日期:  2024-07-24

目录

    /

    返回文章
    返回