Development on improving fatigue life of high strength steel welded joints
-
摘要:
随着人们对装备性能和环保的追求高强钢被越来越多地应用,对于高强钢而言焊接作为一种重要的材料连接方法应用非常广泛,然而接头疲劳性能并不随着钢材强度升高而提高,因此提高焊接接头的疲劳寿命对于高强钢的应用具有重要意义.基于近年来国内外相关研究,总结了影响高强钢焊接接头疲劳性能的因素,包括应力集中、焊接残余应力、焊接方法和焊材选择等因素. 综述了多种提高高强钢焊接接头疲劳寿命的方法,根据其对接头疲劳性能改善机理进行分类,第1类方法主要基于对焊缝几何形貌的改进,通过降低应力集中系数减缓疲劳裂纹的萌生提高寿命.如TIG熔修、激光熔修、喷涂沉积和仿形加工和打磨等方法. 其中一些方法在改进焊缝几何形貌的同时还引入对疲劳寿命有益的残余压应力. 第2类寿命提高方法主要基于对焊缝残余应力进行调整,通过减小残余拉应力或引入残余压应力减缓裂纹扩展速度. 如焊后热处理(post-weld heat treatment, PWHT)、高频机械冲击(high frequency mechanical impact,HFMI)、激光冲击强化(laser shock processing,LSP)、滚压和搅拌摩擦等方法,其中一些方法同时还会改善接头表面硬度和晶粒尺寸从而影响疲劳裂纹萌生. 并对这些方法的使用提出建议和展望.
Abstract:With the increasing application of high-strength steel in people's pursuit of equipment performance and environmental protectio, welding, as an important material joining method, is essential in the application of high-strength steel. However, the fatigue performance of welded joints does not improve with the increase of steel strength level. So how to improve the fatigue life of the welded joints is of great significance to the application of high-strength steel. Based on the relevant research results at home and abroad in recent years, this paper summarizes the factors affecting the fatigue performance of high-strength steel welded joints, including stress concentration, welding residual stress, welding method and welding material. A variety of methods to improve the fatigue life of high strength steel welded joints are reviewed, and they are classified according to the mechanism of improving the fatigue performance of joints. The first type of life improvement method is mainly based on the improvement of the geometric morphology of the joint, and the life is improved by reducing the stress concentration factor to slow down the initiation of fatigue cracks, such as TIG dressing, laser dressing, spray deposition, profiling and grinding methods. Some of these methods improve the weld morphology and lead-in residual compressive stress that is beneficial to fatigue life. The second type of life improvement method is mainly based on the adjustment of the residual stress of the joint. The crack growth rate is slowed down by reducing the residual tensile stress or introducing the residual compressive stress, such as post-weld heat treatment (PWHT), high frequency mechanical shock (HFMI), laser shock processing (LSP), rolling and friction stir. Some of which also improve the surface hardness and grain size of the joint to affect the fatigue crack initiation. Suggestions and prospects for the use of these methods are put forward.
-
Keywords:
- fatigue /
- high strength steel /
- welded joint /
- residual stress /
- improving fatigue life
-
0. 序言
机匣是航空发动机的重要零件之一,是整个发动机的基座,其外形结构复杂[1].不同的发动机、发动机不同部位,机匣的形状各不相同.在早期的发动机中,主要选用耐热钢来制备燃烧室机匣和涡轮机匣,随后采用锻造高温合金来制备高温部件机匣[2].然而,随着航空发动机的推重比增加,对机匣材料的要求不断提高,现开始采用铸造的方法来制造涡轮承力机匣,主要选用的合金牌号有K4169和K432A等.整体铸造机匣最为突出的问题是铸造后出现缩孔、疏松等缺陷,需要采用焊接的方法进行铸造缺陷的修复,K4169合金具有优良的可焊性[3],无焊接裂纹或补焊后变脆等问题,故成为铸造机匣的首选材料.
随着航空发动机的不断升级,先进的航空发动机要求具有更高的承温和承力.在结构设计上,涡轮承力机匣的壁厚更薄,且为空心结构,铸造时补缩十分困难,且与之相配零件多,相关配合尺寸既多又严,对铸件几何形状和尺寸精度要求很高;作为一个主要承力件,对铸件冶金质量要求很高. 因此,传统的机匣材料已经不能满足新一代高推重比发动机的使用要求,现在迫切地需要选用高承温能力、低密度的合金材料用于新一代航空发动机机匣.
K4951合金是中国科学院金属研究所研制的一种沉淀强化镍基铸造高温合金,密度低于8.2 g/cm3,具有优异的高温力学性能[4],可以满足新一代航空发动机高温合金部件的使用工况要求.但是,作为沉淀强化镍基高温合金,K4951合金中难熔元素含量较高[5],铸造热裂纹倾向性较大,焊接修复过程中易形成裂纹[6],焊接修复工艺窗口窄. 因此,K4951合金的焊接性研究成为其在涡轮承力机匣上应用的关键问题.
以往对镍基高温合金进行熔焊研究的过程中,发现裂纹通常形成于晶界[6-8],这是由于在高温条件下,晶界的强度相对于内部晶粒的强度较低,使其成为焊接过程中的薄弱区域[9-11].通常认为各类合金的性能与晶界处元素的偏析和第二相的析出密切相关[12-14].研究表明,在焊接过程中晶界处低熔点相的液化是高温合金裂纹形成的主要原因[15]. 文中针对K4951合金可焊性较差的问题,以合金成分与可焊性的内在联系为切入点,系统研究固溶强化元素和沉淀强化相形成元素在熔焊过程中的偏析行为,分析合金元素对裂纹敏感性的影响,揭示合金元素对焊接裂纹敏感性的作用机制.在此基础上,设计制备具有优良焊接性的熔焊材料,研究成果可为其他航空发动机高温部件的熔焊连接和修复提供技术依据.
1. 试验方法
1.1 试验材料
试验选用的母材为K4951合金,制备的方法为:成分配备好的母合金锭在自制的真空感应炉中熔炼,然后浇铸成厚度为5 mm的板材.将铸坯切割成尺寸为40 mm × 20 mm × 4 mm的板材.重新冶炼特殊成分的K4951母合金,并采用定向凝固炉和定向专用型壳进行定向浇注,浇注前将石英管插入型壳中,使合金液流在石英管内部定向生成柱状晶,试验所采用的石英管如图1所示.
焊丝成分在K4951母合金标准成分(1号)范围的基础上进行了优化调整,分别制备母材成分的焊丝(1号),和在此基础上分别调整Cr,Al,Mo,Nb和B元素的含量,母材和焊丝的具体成分见表1(Ni为余量).
表 1 母材及焊丝合金元素成分(质量分数,%)Table 1. Compositions of base metal and welding wire编号 合金元素 Co Cr Al Nb Mo W C B 1 5 10 5.5 1.8 3.5 3 0.1 0.005 2 5 10 5.5 1.8 3.5 3 0.1 0.04 3 5 10 5.5 2.4 3.5 3 0.1 0.005 4 5 8 5.5 1.8 3.5 3 0.1 0.005 5 5 10 5.5 1.8 2.5 3 0.1 0.005 6 5 10 6.2 1.8 3.5 3 0.1 0.005 7 5 8 6.2 2.4 2.5 3 0.1 0.005 1.2 试验方法
采用钨极氩弧焊(TIG)对板厚为4 mm的K4951和K465高温镍基合金进行焊接,采用单边V形坡口,预留1 mm的钝边,并采用75%Ar + 25%He混合气保护,焊接电流为45 A,焊接电压为13 V,焊接速度为0.05 m/min.焊后利用扫描电子显微镜(SEM)、透射电镜(TEM)、能谱仪对焊接接头的显微组织进行分析.利用IPP6.0软件来测量裂纹长度.利用电子探针(EPMA)来定量分析第二相的成分,每种第二相测试3次,取平均值.利用Thermal-calc软件来模拟焊缝的凝固过程,所采用的数据库为TTNi8.利用挂式持久试验机对焊后接头进行650 ℃/620 MPa条件下的持久寿命测试,每个条件下的接头测试3次,取平均值.采用有限元分析软件Abaqus中的Standard/Explicit模块建立2维平面有限元模型,实现多次焊道填充层的模拟.通过Python编程设计子程序快速创建分析步完成焊接材料的填充,通过施加温度场边界条件实现对焊接加热升温及冷却过程的模拟.
2. 试验结果及分析
2.1 K4951熔焊接头组织及凝固行为
图2a为采用与母材成分一致的焊丝(1号)焊接K4951合金的焊接接头宏观扫描电子图像.图中可明显观察到接头可以分为两个区:焊缝区(FZ)和热影响区(HAZ).焊缝区的晶粒与母材区的晶粒联生生长,其晶粒尺寸小于热影响区.同时也可以看出,采用同质焊料来焊接该合金在焊缝内容易形成微裂纹.
图2b和图2d焊缝区的局部放大图,可以看出在焊缝区内析出了大量第二相,这些析出相主要分布在枝晶间和晶界处.这些析出相大部分呈骨架状,同时在晶界处也可以观察到细小的链状析出相和少量尺寸较小颗粒状析出相,且微裂纹易于在这些细小的析出相处萌生(图2c和2d).利用SEM-EDS初步分析各个析出相的成分发现,骨架状析出相主要富Nb,而链状析出相主要富Mo和Cr,可判断二者为不同类型的析出相.
利用TEM对焊缝内各类析出相的微观结构进行分析.通过分析TEM衍射谱发现,骨架状和链状析出相均具有复杂面心立方晶体结构(图3a和3c),其中骨架状析出相的晶体结构与MC碳化物的晶体结构一致;链状硼化物的晶体结构与M23C6的晶体结构一致.对颗粒状析出相的衍射谱进行分析发现该析出相具有四方晶体结构,与M3B2型硼化物的晶体结构一致.
利用EPMA对焊缝内各类析出相的成分进行定量分析,其结果如图4所示.可以发现骨架状析出相的Nb和C的原子比例接近于1,结合TEM衍射结果可判断该析出相为MC型碳化物.晶界处链状析出相的原子比为:M(Mo,Cr,Ni等)∶C∶B ≈ 80∶12∶8,金属元素M与C和B的原子比例约为4,这与M23C6中金属元素与C的比(3.83)相接近,考虑到该相含有一定量的B元素,并结合前面TEM衍射分析结果可判断该析出相为具有复杂面心立方结构M23(C, B)6型碳硼化合物.晶界处细小颗粒状析出相同样富Mo和Cr,但该相的B元素含量较高( ~ 35%),与M3B2的原子比例较为接近,可推断其为具有四方晶体结构的M3B2型硼化物.
利用Thermal-calc软件对1号焊丝成分的合金平衡凝固相图进行计算,计算结果如图5所示.根据结果可知K4951成分的合金在平衡凝固过程中涉及到的相种类主要有γ基体、γ′析出相、MC和M23C6型碳化物以及M3B2型硼化物.这与实际观察的结果相接近,证明了理论计算具有一定的准确性. 因此,在平衡凝固过程中,首先形成基体γ相,然后发生L→γ + MC共晶反应,这与实际观察到的骨架状碳化物共晶相对应.然而通过分析计算结果还可以发现,在降温过程中MC碳化物只有在温度高于1100 ℃以上时才比较稳定,焊缝冷却至室温时MC碳化物会发生分解而形成M23C6碳化物,这与实际观察到的大量MC碳化物不符.分析其原因,Thermal-calc软件计算的结果是基于平衡状态下的凝固相图,而实际凝固过程中的冷却速率较快. 因此,在高温下形成的MC碳化物在快冷下只有少部分发生了γ + MC→ M23C6转变,大部分MC碳化物保留至室温.此外,由于合金中含有B元素,而B元素在凝固过程中易偏聚于残余液相内,因此B原子倾向于偏聚在枝晶间和晶界处,且与Mo,W和Cr等强硼化物形成元素结合进而形成M3B2. 另外,在降温过程中,少量B原子还会进入到M23C6中,与其构成M23(C, B)6型碳硼化合物.这可能与B原子替换了M23C6中C原子位置降低了体系的能量有关.
2.2 焊丝成分对焊缝裂纹敏感性及性能的影响
利用表1的成分,在原有基材焊丝的成分基础上,调整B,Nb,Cr,Mo和Al的成分制备出不同成分的焊丝,对K4951合金进行焊接,然后统计采用不同焊丝获得的接头内单位面积内的微裂纹总长,用来评价这些焊丝焊接K4951合金的裂纹敏感性;在此基础上测试不同成分的接头在650 ℃/620 MPa条件下的持久寿命,评价接头的服役性能,焊缝微裂纹总长和相应的持久寿命统计结果如图6所示.该结果表明,提高B元素含量(2号),接头的裂纹敏感性显著增加,裂纹总长度提高到原焊缝(1号)的近4倍,导致接头在机械加工过程中直接断裂,持久寿命为零;提高Nb元素含量(3号)可以较为有效的降低焊缝样品的焊接裂纹敏感性,接头的持久寿命显著提升;降低Cr,Mo(4号 ~ 5号)的含量可以在一定程度上降低合金的裂纹敏感性,使得接头的持久寿命提升;提高Al(6号)的含量导致接头的裂纹敏感性有所上升,从而使接头的持久寿命有所下降.
分析发现,对于Al元素含量较高的合金(6号),虽然具有较高的γ′体积分数(图7b),却并没有实现较好的持久寿命,这主要与焊接过程中形成了较多的裂纹有关.为降低焊接接头的裂纹敏感性,同时提升接头的持久性能,在综合分析不同元素对焊缝裂纹敏感性的影响基础上,提高Nb元素含量,降低Mo,Cr元素含量来提升焊缝的抗裂能力,提升Al元素含量来增加沉淀强化相(γ′相)的含量,制备出优化的焊丝(7号). 利用该焊丝焊接K4951合金,发现接头的裂纹敏感性显著降低,同时沉淀强化相的含量相对于基材焊丝也得到了提升(图7c).
以上结果表明,接头的服役性能是接头裂纹敏感性与强化相综合作用的结果.通过优化焊丝成分降低接头的裂纹敏感性,同时提升基体的沉淀强化程度可以获得较为优异的高温服役性能.
2.3 合金元素在焊接开裂过程中的作用机制
为分析焊丝成分对焊接裂纹敏感性的影响,须明确在焊接过程中各类元素在焊缝凝固过程中的偏析行为.利用SEM-EDS测试各类元素在不同成分焊缝内枝晶干和枝晶间的成分,分析元素的分配系数,结果如图8所示.根据测试结果可知,Al,Cr,Nb和Mo元素的分配系数k均小于1,表明这些元素易于偏聚在枝晶间,Ni,W和Co的元素分配系数k均大于1,表明这些元素易于偏聚在枝晶干.
利用热力学软件Thermo-calc中的Scheil快速凝固模型计算焊缝凝固过程中元素固液配分曲线,结果如图9所示. 图10为不同焊丝焊缝内晶界的形貌. 利用有限元软件模拟工件在焊接过程中的应力分布,结果表明,Nb元素在凝固过程中质量分数随液相质量分数的减少呈现增加趋势,且斜率最大,这与Nb元素具有更低的分配系数(约为0.4)相对应.这表明该元素相比于其他元素更容易偏析于枝晶间,增加了液化相的体积分数(图10a,10b),有利于补充由焊缝热应力引起的开裂,从而提升液化晶界的愈合能力,降低焊缝的裂纹敏感性.Cr和Mo易偏析于枝晶间,同时两种元素既是固溶强化元素也是硼化物形成元素.降低Cr和Mo的含量可以在一定程度上降低焊缝基体的本征强度从而抑制基体的开裂倾向,同时也可以降低枝晶间和晶界处脆性硼化物相(M3B2)的形成,进而使相对较多的B原子进入M23C6中,在晶界形成更多的链状M23(C, B)6型碳硼化合物,而已有研究表明链状M23(C, B)6碳硼化合物有利于抑制晶界的开裂[16]. 因此,以上两方面因素共同作用使得减少Cr和Mo的含量可以降低焊缝的裂纹敏感性.Al元素易偏析于枝晶间和晶界,仅增加Al元素一方面可以提升沉淀强化相的含量,但同时也增加了晶界处形成脆性γ/γ′共晶的倾向[5],增加裂纹敏感性. 因此,仅增加Al元素无法达到提升焊缝服役性能的目的.
需要说明的是由于测试精度的限制,B元素并没有进行定量测试,但根据以往的研究可知,B元素镍基高温合金凝固过程中易偏析于晶界[17],因此提升B的含量可以促进晶界脆性硼化物的形成(图10c).而相比于M23C6碳化物而言,M3B2硼化物的脆性更大,这是由于M3B2硼化物中非金属元素的含量更高,非金属性更强,形成焓更低. 将B的含量从0.005%提升至0.04%,可显著促进晶界硼化物的形成,消耗了对晶界有利的M23(C, B)6硼化合物的形成元素,从而抑制了M23(C, B)6的形成.因此,提高B含量可提升接头的裂纹敏感性.
3. 结论
(1)采用研制的焊丝焊接K4951,焊接接头主要包含γ基体、γ′析出相、MC和M23(C, B)6型碳硼化物以及M3B2型硼化物,在凝固过程中主要发生L→ γ + MC共晶反应和γ + MC + B→M23(C, B)6共晶转变.
(2) Nb的枝晶干/枝晶间分配系数低于0.5,易偏析于晶界. 增加晶界液化相的体积分数,提升液化晶界的愈合能力,从而降低焊接裂纹敏感性,而B元素的作用相反.
(3) Cr,Mo元素可增加焊缝基体的本征强度,促进脆性硼化物的形成,增加焊缝的开裂倾向.降低这两种元素1% ~ 2%,可降低焊缝的裂纹敏感性.
(4) 提升焊丝中Al的含量0.7%焊缝中的沉淀强化相含量由38.7%增加至43.6%,会提升接头的裂纹敏感性. 同时调控焊缝中的固溶强化元素和晶界强化元素可有效抑制焊缝金属的裂纹敏感性,从而达到提升焊缝金属高温服役性能的目的.
-
-
[1] 帅朋, 高珊, 吴志生, 等. 高强钢焊接研究现状[J]. 焊接技术, 2016, 45(6): 1 − 4. Shuai Peng, Gao Shan, Wu Zhisheng, et al. Research status of high strength steel welding[J]. Welding Technology, 2016, 45(6): 1 − 4.
[2] 张伟. 第三代高强钢激光点焊接头成形机理及断裂行为研究[D]. 合肥: 中国科学院大学, 2021. Zhang Wei. Formation mechanism and fracture behavior of laser spot welded third generation high-strength steel [ D ]. Hefei: University of Chinese Academy of Sciences , 2021.
[3] 胡银辉. DP1000高强钢点焊工艺及接头组织与性能[D]. 长春: 吉林大学, 2013. Hu Yinhui. Resistance spot welding process and the microstructures and properties of DP1000 high strength steel joints [D]. Changchun: Jilin University, 2013.
[4] Ohnishi, Kawahito, Mizutani, et al. Butt welding of thick, high strength steel plate with a high power laser and hot wire to improve tolerance to gap variance and control weld metal oxygen content[J]. Science and Technology of Welding and Joining, 2013, 18(4): 314 − 322. doi: 10.1179/1362171813Y.0000000108
[5] Katayama S, Kawahito Y, Mizutani M. Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects[J]. Physics Procedia, 2010, 5(2): 9 − 17.
[6] Otegui J L, Kerr H W, Burns D J, et al. Fatigue crack initiation from defects at weld toes in steel[J]. International Journal of Pressure Vessels and Piping, 1989, 38(5): 385 − 417. doi: 10.1016/0308-0161(89)90048-3
[7] 李进. 大港电厂1号汽轮机喷嘴室断裂事故金属分析[J]. 华北电力技术, 1991(8): 7 − 12. Li Jin. Metal analysis of No. 1 steam turbine nozzle chamber fracture accident in dagang power plant[J]. North China Electric Power Technology, 1991(8): 7 − 12.
[8] 叶华文, 黄若森, 周渝, 等. 澳大利亚焊接工字钢梁桥疲劳断裂事故分析[J]. 建筑结构, 2022, 52,(S1): 1251 − 1255. Ye Huawen, Huang Ruosen, Zhou Yu, et al. Fatigue fracture failure analysis of a welded I-beam steel bridge in Australia[J]. Building Structure, 2022, 52,(S1): 1251 − 1255.
[9] Chapetti M D, Otegui J L. Controlled toe waviness as a means to increase fatigue resistance of automatic welds in transverse loading[J]. International Journal of Fatigue, 1997, 19(10): 667 − 675. doi: 10.1016/S0142-1123(97)00061-3
[10] Ahiale K G, Oh Y, Choi W, et al. Microstructure and fatigue resistance of high strength dual phase steel welded with gas metal arc welding and plasma arc welding processes[J]. Metals and Materials International, 2013, 19(5): 933 − 939. doi: 10.1007/s12540-013-5005-3
[11] Tsuyoshi S, Naoki Y, Yoshikiyo T, et al. Effect of weld toe geometry on fatigue life of lap fillet welded ultra-high strength steel joints[J]. International Journal of Fatigue, 2018, 116: 409 − 420. doi: 10.1016/j.ijfatigue.2018.06.050
[12] 张晨星. 焊缝形貌对焊接强度的影响研究[D]. 秦皇岛: 燕山大学, 2022. Zhang Chenxing. Study on the influence of weld morphology on welding strength[D]. Qinhuangdao: Yanshan University, 2022.
[13] 王晓南, 郑知, 曾盼林, 等. 800 MPa级高强钢光纤激光焊接接头微观结构对硬度及疲劳性能的影响[J]. 中国激光, 2016, 43(12): 115 − 124. Wang Xiaonan, Zheng Zhi, Zeng Panlin, et al. Effects of microstructure on hardness and fatigue properties of 800 MPa high strength steel fiber laser welded joints[J]. Chinese Journal of Lasers, 2016, 43(12): 115 − 124.
[14] Wang W K, Liu Y, Guo Y, et al. High cycle fatigue and fracture behaviors of CrMoV/NiCrMoV dissimilar rotor welded joint at 280 ℃[J]. Materials Science & Engineering A, 2020: 139473.
[15] 镇顺利. 焊接T形接头疲劳寿命及残余应力释放研究[D]. 石家庄铁道大学, 2022. Zheng Shunli. Research on fatigue life and residual stress release of welded T-joints[D]. Shijiazhuang Tiedao University, 2022.
[16] 苗玉刚, 刘吉, 李小旭, 等. BC-MIG丝材电弧增材制造NAB/钢复合结构的微观组织与力学性能[J]. 焊接学报, 2023, 44(7): 56 − 62. Miao Yugang, Liu Ji, Li Xiaoxu. Microstructure and mechanical properties of NAB/steel composite structures by additive manufacturing with BC-MIG wire arc[J]. Transactions of the China Welding Institution, 2023, 44(7): 56 − 62.
[17] 苟川东. X80管道焊接残余应力及结构疲劳寿命数值分析[D]. 西安理工大学, 2022. Gou Chuandong. Numerical analysis of welding residual stress and structural fatigue life of X80 pipeline[D]. Xi 'an University of Technology, 2022.
[18] Anna E, Javad R, Sandra C, et al. The effect of surface treatment and orientation on fatigue crack growth rate and residual stress distribution of wire arc additively manufactured low carbon steel components[J]. Journal of Materials Research and Technology, 2023, 24: 2988 − 3004. doi: 10.1016/j.jmrt.2023.03.227
[19] 熊祥. 残余应力场对超高强钢焊接接头疲劳裂纹扩展行为的影响[D]. 哈尔滨工业大学, 2014. Xiong Xiang. Effect of residual stress field on fatigue crack propagation behavior at welded joints of ultra-high strength steel[D]. Harbin Institute of Technology, 2014.
[20] Leitner M , Mossler W, Putz A, et al. Effect of post-weld heat treatment on the fatigue strength of HFMI-treated mild steel joints[J]. Welding in the World, 2015, 59(6): 861 − 873.
[21] 宋威, 满铮, 徐杰, 等. 含错位效应十字焊接接头疲劳可靠性评估[J]. 焊接学报, 2023, 44(6): 20 − 26 + 34. doi: 10.12073/j.hjxb.20220629001 Song Wei, Man Zheng, Xu Jie, et al. Fatigue reliability analysis of load-carrying cruciform joints with misalignment effects[J]. Transactions of the China Welding Institution, 2023, 44(6): 20 − 26 + 34. doi: 10.12073/j.hjxb.20220629001
[22] Ceferino S, Nenad G, Tomaz V, et al. Effect of welding processes on the fatigue behaviour of ultra-high strength steel butt-welded joints[J]. Engineering Fracture Mechanics, 2022, 275: 108845. doi: 10.1016/j.engfracmech.2022.108845
[23] Tumer M, Schneider-Broskamp C, Enzinger N. Fusion welding of ultra-high strength structural steels-a review[J]. Journal of Manufacturing Processes, 2022, 82: 203 − 229. doi: 10.1016/j.jmapro.2022.07.049
[24] Dzioba I, Pala T. Influence of LWE on strength of welded joints of HSS S960-experimental and numerical analysis[J]. Materials, 2020, 13(3): 747 − 747. doi: 10.3390/ma13030747
[25] Hariprasath P, Sivaraj P, Balasubramanian V, et al. Effect of welding processes on high cycle fatigue behavior for naval grade HSLA joints: a fatigue strength prediction[J]. Engineering Failure Analysis, 2022, 142: 106783. doi: 10.1016/j.engfailanal.2022.106783
[26] Ravi S, Balasubramanian V, Babu S, et al. Assessment of some factors influencing the fatigue life of strength mis-matched HSLA steel weldments[J]. Materials & Design, 2004, 25(2): 125 − 135.
[27] Liu Y, Tsang K S, Subramaniam N A, et al. Structural fatigue investigation of thermite welded rail joints considering weld-induced residual stress and stress relaxation by cyclic load[J]. Engineering Structures, 2021, 235: 112033. doi: 10.1016/j.engstruct.2021.112033
[28] Ngoula T D, Beier H, Vormwald M. Fatigue crack growth in cruciform welded joints: influence of residual stresses and of the weld toe geometry[J]. International Journal of Fatigue, 2017, 101: 253 − 262.
[29] 赵智力, 杨建国, 刘雪松等. 10CrNi3MoV钢低匹配对接接头的拉伸疲劳性能[J]. 焊接学报, 2010, 31(3): 89 − 92. Zhao Zhili, Yang Jianguo, Liu Xuesong, et al. Mechanical and fatigue properties of undermatching butt joints of 10CrNi3MoV steel[J]. Transactions of the China Welding Institution, 2010, 31(3): 89 − 92 .
[30] Adam D, Marcell G, Janos L. The influence of mismatch effect on the high cycle fatigue resistance of high strength steel welded joints[J]. Advanced Materials Research, 2018, 1146: 73 − 83.
[31] Ravi S, Balasubramanian V, Nasser N S. Effect of mis-match ratio (MMR) on fatigue crack growth behaviour of HSLA steel welds[J]. Engineering Failure Analysis, 2003, 11(3): 413 − 428.
[32] Ravi S, Balasubramanian V, Nasser N S. Influences of Post Weld heat treatment on fatigue life prediction of gtrength mis-matched HSLA steel welds[J]. International Journal of Fatigue, 2005(27): 547 − 553
[33] Ravi S, Balasubramanian V, Nasser S N. Fatigue life prediction of strength mis-matched high strength low alloy steel welds[J]. Materials & Design, 2006, 27(4): 278 − 286.
[34] Shiga C, Murakawa H, Hiraoka K, et al. Elongated bead weld method for improvement of fatigue properties in welded joints of ship hull structures using low transformation temperature welding materials[J]. Welding in the World, 2017, 61(4): 769 − 788. doi: 10.1007/s40194-017-0439-8
[35] Smith C, Pistorius P G. The effect of a long post weld heat treatment on the integrity of a welded joint in a pressure vessel steel[J]. International Journal of Pressure Vessels and Piping, 1997, 70(3): 183 − 195. doi: 10.1016/S0308-0161(96)00029-4
[36] Feng X Y, Zheng K F, Heng J L, et al. Fatigue performance of rib-to-deck joints in orthotropic steel deck with PWHT[J]. Journal of Constructional Steel Research, 2022, 196: 107420. doi: 10.1016/j.jcsr.2022.107420
[37] Selvamani S, Vigneshwar M, Nikhil M, et al. Enhancing the fatigue properties of friction welded AISI 1020 grade steel joints using post weld heat treatment process in optimized condition[J]. Materials Today, 2019, 16(P2): 1251 − 1258.
[38] Yildirim C H, Marquis B G. Overview of fatigue data for high frequency mechanical impact treated welded joints[J]. Welding in the World, 2012, 56(7-8): 82 − 96. doi: 10.1007/BF03321368
[39] 朱鹏飞, 严宏志, 陈志, 等. 齿轮齿面喷丸强化研究现状与展望[J]. 表面技术, 2020, 49(4): 113 − 131. Zhu Pengfei, Yan Hongzhi, Chen Zhi, et al. Research status and prospect of shot peening of gear tooth flanks[J]. Surface Technology, 2020, 49(4): 113 − 131
[40] Malaki M, Ding H. A review of ultrasonic peening treatment[J]. Materials & Design, 2015, 87: 1072 − 1086.
[41] Zhan K, Jiang C H, Ji V. Effect of prestress state on surface layer characteristic of S30432 austenitic stainless steel in shot peening process[J]. Materials & Design, 2012, 42: 89 − 93.
[42] Scuracchio G B, Lima D B, Schon G C. Role of residual stresses induced by double peening on fatigue durability of automotive leaf springs[J]. Materials & Design, 2013, 47: 672 − 676.
[43] 王成. 喷丸强化过程的数值模拟与疲劳裂纹扩展行为研究[D]. 浙江工业大学, 2016. Wang Cheng. Study of shot peening simulation and fatigue crack growth behavior[D]. Zhejiang University of Technology, 2016.
[44] 李丰博, 肖桂枝. 喷丸对X70管线钢焊接接头组织与性能的影响[J]. 金属热处理, 2017, 42(9): 178 − 182. Li Fengbo, Xiao Guizhi. Effect of shot peening on microstructure and properties of pipeline steel welded joint[J]. Heat Treatment of Metals, 2017, 42(9): 178 − 182.
[45] 门延会, 王强, 严瑞强, 等. 喷丸对小型船舶钢板焊接接头的腐蚀和疲劳影响[J]. 船舶工程, 2021, 43(9): 101 − 104 + 110. Men Yanhui, Wang Qiang, Yan Ruiqiang, et al. Effects of shot blasting on corrosion and fatigue properties of welded joint of ship steel sheets[J]. Ship Engineering, 2021, 43(9): 101 − 104 + 110.
[46] Fueki R, Takahashi K. Improving the fatigue limit and rendering a defect harmless by laser peening for a high strength steel welded joint[J]. Optics & Laser Technology, 2021, 134: 106605.
[47] Yamaguchi N, Shiozaki T, Tamai Y. Micro-needle peening method to improve fatigue strength of arc-welded ultra-high strength steel joints[J]. Journal of Materials Processing Technology, 2021, 288: 116894. doi: 10.1016/j.jmatprotec.2020.116894
[48] 李东东, 郑云, 初明进, 等. 超声冲击强化技术处理焊接结构的研究进展[J]. 材料保护, 2019, 52(11): 139 − 145 + 150. Li Dongdong, Zheng Yun, Chu Mingjin, et al. Research progress of ultrasonic impact strengthening technology for welded structures[J]. Material protection, 2019, 52(11): 139 − 145 + 150.
[49] Abdullah A, Malaki M, Eskandari A. Strength enhancement of the welded structures by ultrasonic peening[J]. Materials & Design, 2012, 38: 7 − 18.
[50] 朱有利, 王燕礼, 边飞龙, 等. 金属材料超声表面强化技术的研究与应用进展[J]. 机械工程学报, 2014, 50(20): 35 − 45. doi: 10.3901/JME.2014.20.035 Zhu Youli, Wang Yanli, Bian Feilong, et al. Progresses on research and application of metal ultrasonic surface enhancement technologies[J]. Journal of Mechanical Engineering, 2014, 50(20): 35 − 45. doi: 10.3901/JME.2014.20.035
[51] 白易立, 王东坡, 邓彩艳, 等. 超声冲击强度对焊接接头疲劳寿命的影响[J]. 焊接学报, 2019, 40(12): 149 − 153. Bai Yili, Wang Dongpo, Deng Caiyan, et al. Effect of ultrasonic impact strength on fatigue life of welded joints[J]. Transactions of the China Welding Institution, 2019, 40(12): 149 − 153.
[52] Huang S, Qi Z J, Zhang A F, et al. Reducing the anisotropy of the mechanical properties of directed energy deposited Ti6Al4V alloy with inter-layer ultrasonic impact peening and heat treatment[J]. Materials Science & Engineering A, 2022, 857: 144123.
[53] 邓海鹏, 于影霞. 超声冲击对焊接接头表面质量的影响[J]. 表面技术, 2017, 46(2): 208 − 213. Deng Haipeng, Yu Yingxia. Effect of ultrasonic impact on the surface quality of welded joint[J]. Surface Technology, 2017, 46(2): 208 − 213.
[54] Haagensen P J, Statnikov E S, Lopezmartinez L. Introductory fatigue tests on welded joints in high strength steel and aluminum improved by various methods including ultrasonic impact treatment (UIT)[R]. Oslo, Norway: International Institute of Welding, 2008.
[55] 叶雄林, 朱有利. 超声冲击细化22SiMn2TiB超高强钢焊接接头晶粒研究[J]. 热加工工艺, 2006(6): 12 − 14. doi: 10.3969/j.issn.1001-3814.2006.06.006 Ye Xionglin, ZhuYouli. Investigation on fining grain of ultrahigh strength steel welding joint by ultrasonic impact treatment[J]. Hot Working Technology, 2006(6): 12 − 14. doi: 10.3969/j.issn.1001-3814.2006.06.006
[56] Lago J, Trsko L, Jambor M, et al. Fatigue life improvement of the high strength steel welded joints by ultrasonic impact peening[J]. Metals, 2019, 9(6): 618. doi: 10.3390/met9060618
[57] 刘博洋. 超声冲击处理对30CrMnSi钢焊接接头腐蚀和疲劳性能的影响[D]. 吉林大学, 2022. Liu Boyang. Effect of ultrasonic impact treatment on corrosion and fatigue properties of 30CrMnSi steel welded joint[D]. Changchun: Jilin University, 2022.
[58] Zhang H, Wang D P, Xia L Q, et al. Effects of ultrasonic impact treatment on pre-fatigue loaded high-strength steel welded joints[J]. International Journal of Fatigue, 2015, 80: 278 − 287. doi: 10.1016/j.ijfatigue.2015.06.017
[59] Hassan A , Franz U, Mohammad A. Fatigue life extension of existing welded structures via high frequency mechanical impact (HFMI) treatment[J]. Engineering Structures, 2021, 239: 112234.
[60] Yildirim C H, Marquis B G. Fatigue strength improvement factors for high strength steel welded joints treated by high frequency mechanical impact[J]. International Journal of Fatigue, 2012, 44: 168 − 176. doi: 10.1016/j.ijfatigue.2012.05.002
[61] Leitner M, Khurshid M, Barsoum Z. Stability of high frequency mechanical impact (HFMI) post-treatment induced residual stress states under cyclic loading of welded steel joints[J]. Engineering Structures, 2017, 143: 589 − 602. doi: 10.1016/j.engstruct.2017.04.046
[62] Shams-Hakimi P, Zamiri F, Al-Emrani M, et al. Experimental study of transverse attachment joints with 40 and 60 mm thick main plates, improved by high-frequency mechanical impact treatment (HFMI)[J]. Engineering Structures, 2018, 155: 251 − 266. doi: 10.1016/j.engstruct.2017.11.035
[63] 何兆儒, 沈一洲, 周晋, 等. 激光冲击强化的微观组织演变与性能研究进展[J]. 航空制造技术, 2021, 64(19): 48 − 58. He Zhaoru, Shen Yizhou, Zhou Jin, et al. Microstructure evolution and performant enhancement of laser shock peening[J]. Aeronautical Manufacturing Technology, 2021, 64(19): 48 − 58.
[64] Charles S, Wei T, YeL, et al. Laser shock processing and its effects on microstructure and properties of metal alloys: a review[J]. International Journal of Fatigue, 2002, 24(10): 1021 − 1036. doi: 10.1016/S0142-1123(02)00022-1
[65] 舒坤, 乔红超, 赵吉宾, 等. 激光冲击强化对焊缝组织性能影响的研究进展[J]. 表面技术, 2023, 52(7): 41 − 54. Shu Kun, Qiao Hongchao, Zhao Jibin, et al. Research progress on the effect of laser shock processing on the properties of weld[J]. Surface Technology, 2023, 52(7): 41 − 54.
[66] Yuji S, Tomoharu K, Yoshio M, et al. Development of a portable laser peening device and its effect on the fatigue properties of HT780 butt-welded joints[J]. Forces in Mechanics, 2022, 7: 100080. doi: 10.1016/j.finmec.2022.100080
[67] 符素宁, 武德安, 赵静, 等. 激光冲击强化对异种不锈钢焊接接头振动疲劳性能影响的分析[J]. 热加工工艺, 2023, 52(9): 56 − 60. Fu Suning, Wu Dean, Zhao Jing, et al. Analysis of the effect of laser shock peening on the vibration fatigue properties of dissimilar stainless steel welded joints[J]. Hot Working Technology, 2023, 52(9): 56 − 60.
[68] Ma R, Huang D, Zhang J, et al. Effects of rail flash-butt welding and post-weld heat treatment processes meeting different national standards on residual stresses of welded joints[J]. International Journal of Materials Research, 2020, 111(9): 780 − 787. doi: 10.3139/146.111935
[69] Dhakal B, Swaroop S. Review: laser shock peening as post welding treatment technique[J]. Journal of Manufacturing Processes, 2018, 32: 721 − 733. doi: 10.1016/j.jmapro.2018.04.006
[70] Zhang X S, Ma Y, Yang M, et al. A comprehensive review of fatigue behavior of laser shock peened metallic materials[J]. Theoretical and Applied Fracture Mechanics, 2022, 122: 103642. doi: 10.1016/j.tafmec.2022.103642
[71] Leitner M, Simunek D, Shah F S, et al. Numerical fatigue assessment of welded and HFMI-treated joints by notch stress/strain and fracture mechanical approaches[J]. Advances in Engineering Software, 2018, 120: 96 − 106. doi: 10.1016/j.advengsoft.2016.01.022
[72] Schubnell J, Pontner P, Wimpory R, et al. The influence of work hardening and residual stresses on the fatigue behavior of high frequency mechanical impact treated surface layers[J]. International Journal of Fatigue, 2020, 134: 105450. doi: 10.1016/j.ijfatigue.2019.105450
[73] Baumgartner J, Yildirim C H, Barsoum Z. Fatigue strength assessment of TIG-dressed welded steel joints by local approaches[J]. International Journal of Fatigue, 2019, 126: 72 − 78. doi: 10.1016/j.ijfatigue.2019.04.038
[74] Al-Karawi H, Polach U B, Al-Emrani M. Fatigue crack repair in welded structures via tungsten inert gas remelting and high frequency mechanical impact[J]. Journal of Constructional Steel Research, 2020, 172: 106200. doi: 10.1016/j.jcsr.2020.106200
[75] Moritz B, Jonas H, Shi S , et al. Fatigue strength of normal and high strength steel joints improved by weld profiling[J]. Engineering Structures, 2021, 246: 113030.
[76] Moritz B, Wang X R. A review of fatigue test data on weld toe grinding and weld profiling[J]. International Journal of Fatigue, 2021, 145: 106073.
[77] Mettanen H, Nykanen T, Skriko T, et al. Fatigue strength assessment of TIG-dressed ultra-high-strength steel fillet weld joints using the 4R method[J]. International Journal of Fatigue, 2020, 139: 105745. doi: 10.1016/j.ijfatigue.2020.105745
[78] Tuomas S, Antti A, Ilkka P, et al. Fatigue strength of laser-dressed non-load-carrying fillet weld joints made of ultra-high-strength steel[J]. Procedia Structural Integrity, 2022, 38: 393 − 400. doi: 10.1016/j.prostr.2022.03.040
[79] Tobias J, Torbjorn N, Zuheir B. Fatigue and ultimate strength assessment of post weld treated strenx® 1100 plus butt welds[J]. Procedia Structural Integrity, 2022, 38: 414 − 417.
[80] 王佳杰, 杨建国, 张敬强, 等. 随焊冲击碾压整形新方法及等承载接头拉伸与疲劳性能[J]. 焊接学报, 2012, 33(11): 35 − 38. Wang Jiajie, Yang Jianguo, Zhang Jingqiang, et al. A new weld shaping method with trailing impact rolling and of tensile and fatigue properties of equal load-carry capacity joints[J]. Transactions of the China Welding Institution, 2012, 33(11): 35 − 38.
[81] Maximilian K H, Steffen H, Christian D, et al. Automated geometry measurement and deep rolling of butt welds[J]. Welding in the World, 2022, 66(12): 2533 − 2547. doi: 10.1007/s40194-022-01346-w
[82] Jan S, Martin D, Michael L. Strength improvement of laser beam welded joints in cold worked high-manganese-steel by means of deep rolling[J]. Procedia CIRP, 2022, 111: 457 − 461. doi: 10.1016/j.procir.2022.08.065
[83] Danekas C, Heikebrugge S, Schubnell J, et al. Influence of deep rolling on surface layer condition and fatigue life of steel welded joints[J]. International Journal of Fatigue, 2022, 162: 106694.
[84] Sekban D, Aktarer S, Xue P, et al. Impact toughness of friction stir processed low carbon steel used in shipbuilding[J]. Materials Science & Engineering A, 2016, 672: 40 − 48.
[85] Xue P, Wang B B, Chen F F, et al. Microstructure and mechanical properties of friction stir processed Cu with an ideal ultrafine-grained structure[J]. Materials Characterization, 2016, 121: 187 − 194.
[86] Yamamoto H, Danno Y, Ito K, et al. Weld toe modification using spherical-tip WC tool FSP in fatigue strength improvement of high-strength low-alloy steel joints[J]. Materials & Design, 2018, 160: 1019 − 1028.
[87] Yamamoto H, Koga S, Ito K, et al. Fatigue strength improvement due to alloying steel weld toes with WC tool constituent elements through friction stir processing[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(9): 6203 − 6213.
[88] Assadi H, Kreye H, Gärtner F , et al. Cold spraying−a materials perspective[J]. Acta Materialia, 2016, 116: 382 − 407.
[89] Naoki Y , Tsuyoshi S , Yoshikiyo T , et al. Effect of cold spray deposition on fatigue strength of arc-welded ultra-high strength steel sheet[J]. International Journal of Fatigue, 2022, 161: 106876.
[90] Bagherifard S, Guagliano M. Fatigue performance of cold spray deposits: coating, repair and additive manufacturing cases[J]. International Journal of Fatigue, 2020, 139: 105744. doi: 10.1016/j.ijfatigue.2020.105744
[91] Xiong Y M, Zhang M X. The effect of cold sprayed coatings on the mechanical properties of AZ91D magnesium alloys[J]. Surface & Coatings Technology, 2014, 253: 89 − 95.
[92] Cavaliere P, Perrone A, Silvello A. Fatigue behaviour of Inconel 625 cold spray coatings[J]. Surface Engineering, 2018, 34(5): 380 − 391. doi: 10.1080/02670844.2017.1371872