Development on improving fatigue life of high strength steel welded joints
-
摘要:
随着人们对装备性能和环保的追求高强钢被越来越多地应用,对于高强钢而言焊接作为一种重要的材料连接方法应用非常广泛,然而接头疲劳性能并不随着钢材强度升高而提高,因此提高焊接接头的疲劳寿命对于高强钢的应用具有重要意义.基于近年来国内外相关研究,总结了影响高强钢焊接接头疲劳性能的因素,包括应力集中、焊接残余应力、焊接方法和焊材选择等因素. 综述了多种提高高强钢焊接接头疲劳寿命的方法,根据其对接头疲劳性能改善机理进行分类,第1类方法主要基于对焊缝几何形貌的改进,通过降低应力集中系数减缓疲劳裂纹的萌生提高寿命.如TIG熔修、激光熔修、喷涂沉积和仿形加工和打磨等方法. 其中一些方法在改进焊缝几何形貌的同时还引入对疲劳寿命有益的残余压应力. 第2类寿命提高方法主要基于对焊缝残余应力进行调整,通过减小残余拉应力或引入残余压应力减缓裂纹扩展速度. 如焊后热处理(post-weld heat treatment, PWHT)、高频机械冲击(high frequency mechanical impact,HFMI)、激光冲击强化(laser shock processing,LSP)、滚压和搅拌摩擦等方法,其中一些方法同时还会改善接头表面硬度和晶粒尺寸从而影响疲劳裂纹萌生. 并对这些方法的使用提出建议和展望.
Abstract:With the increasing application of high-strength steel in people's pursuit of equipment performance and environmental protectio, welding, as an important material joining method, is essential in the application of high-strength steel. However, the fatigue performance of welded joints does not improve with the increase of steel strength level. So how to improve the fatigue life of the welded joints is of great significance to the application of high-strength steel. Based on the relevant research results at home and abroad in recent years, this paper summarizes the factors affecting the fatigue performance of high-strength steel welded joints, including stress concentration, welding residual stress, welding method and welding material. A variety of methods to improve the fatigue life of high strength steel welded joints are reviewed, and they are classified according to the mechanism of improving the fatigue performance of joints. The first type of life improvement method is mainly based on the improvement of the geometric morphology of the joint, and the life is improved by reducing the stress concentration factor to slow down the initiation of fatigue cracks, such as TIG dressing, laser dressing, spray deposition, profiling and grinding methods. Some of these methods improve the weld morphology and lead-in residual compressive stress that is beneficial to fatigue life. The second type of life improvement method is mainly based on the adjustment of the residual stress of the joint. The crack growth rate is slowed down by reducing the residual tensile stress or introducing the residual compressive stress, such as post-weld heat treatment (PWHT), high frequency mechanical shock (HFMI), laser shock processing (LSP), rolling and friction stir. Some of which also improve the surface hardness and grain size of the joint to affect the fatigue crack initiation. Suggestions and prospects for the use of these methods are put forward.
-
Keywords:
- fatigue /
- high strength steel /
- welded joint /
- residual stress /
- improving fatigue life
-
0. 序言
焊接被喻为制造业的“裁缝”,在制造业中必不可少,高效焊接是焊接领域永恒的追求. 提高电弧穿透能力是提高焊接速度的一种有效途径[1-3]. 常规等离子弧焊接工艺不开坡口一次可焊透5 ~ 8 mm的钢板,可实现单面焊双面成形[3-4]. 然而当对更厚的工件进行焊接时,等离子弧穿孔过程中形成的小孔稳定性较差[5-6],电弧穿透能力不足[7-8],制约了其在工程领域中的应用.
为了提高等离子弧焊接电弧穿透能力,国内外研究学者开展了大量的研究工作. 武传松团队通过超声辅助等离子弧焊接工艺提高电弧穿透能力[9]. 陈树君课题组通过环境压力来改变电弧压力进而改变电弧穿透能力[10].Richardson团队通过在等离子弧焊接电弧周围增加径向气流,初步证实了径向气流可以增强电弧穿透能力[11]. 文中在前人的基础上研发了气流再压缩等离子弧焊接工艺,研究发现压缩气对喷嘴外部电弧的冷却作用是电弧收缩和电弧穿透能力提高的主要原因[12-15]. 基于前期研究,如果可以通过其它方式进一步冷却喷嘴外部电弧,就有可能进一步收缩电弧和提高电弧穿透能力. 金属粉末熔化会吸热,蒸发会吸热. 将金属粉末通过一定的角度和位置送入电弧弧柱中,金属粉末熔化吸热、蒸发吸热,是否能够压缩电弧和提高电弧穿透能力,这是一个值得研究的科学问题.
文中设计并搭建金属粉末再压缩等离子弧焊接试验平台,采集焊接过程电信号、视觉信号、弧光光谱信号等,并从焊缝成形、电弧电压、熔融金属过渡、弧光光谱等方面对比分析金属粉末再压缩等离子弧焊接和常规等离子弧焊接.
1. 金属粉末再压缩等离子弧焊接试验平台
试验平台主要包括等离子弧焊接电源及焊枪系统、机械控制系统、金属粉末供给系统、焊接过程电信号采集系统、视觉信号采集系统及电弧弧光光谱采集系统(图1).
在焊接电源及焊枪系统中,等离子弧焊接电源采用德国EWM Tetrix 422 DC plasma焊机,焊接电流输出范围为5 ~ 420 A. 焊枪是采用自主设计的金属粉末再压缩等离子弧焊枪.图2是金属粉末再压缩等离子弧焊枪结构示意图. 与常规等离子弧焊枪相比,该焊枪在保护气体通道和离子气体通道之间设计了金属粉末通道,该通道可将金属粉末送入等离子电弧中:一方面进入电弧的金属粉末在熔化和蒸发过程中会吸收电弧热量,起到冷却电弧的作用,迫使电弧收缩;另一方面蒸发后的金属蒸气会影响等离子体成分,改变等离子弧电流通道. 在上述的综合作用下,预期可以增加电弧穿透能力,实现对等离子弧的“再压缩”.
金属粉末供给系统主要由气瓶、气体质量流量控制器、送粉器、气管、焊枪等部分组成. 焊接过程电信号采集系统可实时采集焊接过程中的焊接电流、电弧电压信号. 视觉信号采集系统通过高速摄像机实时监测熔融金属过渡. 电弧弧光光谱采集系统主要包括等离子体光谱仪、光纤探头、光纤、计算机及其配套软件,光谱仪选用荷兰Avantes制造的等离子体光纤光谱仪.
2. 试验方法
试验材料选用316L不锈钢板,尺寸为150 mm × 120 mm × 10 mm. 试验前,使用角磨机对钢板表面进行机械打磨,去除氧化膜,然后使用无水乙醇对表面进行清洗,去除油污,自然烘干. 选取两块试验钢板,分别进行金属粉末再压缩等离子弧焊接和常规等离子弧焊接. 焊枪喷嘴距离工件上表面的距离为5 mm,钨极选用铈钨极,钨极内缩量为5 mm,离子气体、保护气体选用纯度为99.99%的氩气. 其它主要焊接工艺参数如表1所示. 金属粉末为316L不锈钢粉末,粉末颗粒直径为120 ~ 150 μm. 与常规等离子弧焊接工艺相比,金属粉末再压缩等离子弧焊接工艺增加送粉量,其余焊接工艺参数相同.
表 1 焊接工艺参数Table 1. Welding parameter焊接工艺 焊接电流
I/A焊接速度
v/(mm·min−1)送粉速度
vs/(g·min−1)离子气流量
Q1/(L·min−1)保护气流量
Q2/(L·min−1)常规等离子弧焊接 195 96 0 3.1 20 金属粉末再压缩等离子弧焊接 195 96 1.15 3.1 20 在焊接试验过程中,实时采集金属粉末再压缩等离子弧焊接和常规等离子弧焊接过程的电信号、视觉信号、光谱信号. 焊接完成后,使用线切割设备在焊缝中间部分,沿着垂直于焊缝轴线方向截取试样,试样经清洗、打磨、抛光、腐蚀后,用体式显微镜观察焊缝截面形貌.
3. 结果分析
3.1 焊缝成形分析
图3a是常规等离子弧焊接焊缝截面形貌;图3b是金属粉末再压缩等离子弧焊接焊缝截面形貌. 常规等离子弧焊接工艺的焊缝熔深为8.0 mm,熔宽为13.42 mm,余高为0.95 mm;金属粉末再压缩等离子弧焊接工艺的焊缝熔深为9.29 mm,熔宽为11.77 mm,余高为1.16 mm. 可以看出,在相同电流195 A条件下,与常规等离子弧焊接相比,金属粉末再压缩等离子弧焊接焊缝熔深增加1.29 mm,熔宽减少1.65 mm,余高增加0.21 mm. 在相同电流条件下,与常规等离子弧焊接相比,金属粉末再压缩等离子弧焊接焊缝熔深增加、熔宽变窄. 这说明,相同电流条件下,金属粉末再压缩等离子弧焊接电弧穿透能力增强.
3.2 电信号分析
图4是采集的金属粉末再压缩等离子弧焊接和常规等离子弧焊接的电弧电压变化曲线. 计算得出,常规等离子弧焊接工艺的平均电压为29.68 V;金属粉末再压缩等离子弧焊接工艺平均电弧电压为30.31 V. 在相同电流195 A条件下,与常规等离子弧焊接相比,金属粉末再压缩等离子弧焊接电弧电压增加了0.63 V,电弧平均功率增加了122.85 W.从能量的角度分析,能量增加会改变焊缝成形. 能量增加,熔深和熔宽都有可能增加;然而金属粉末再压缩等离子弧焊接熔深增加、熔宽减小.
3.3 视觉信号分析
采用高速摄像机拍摄金属粉末再压缩等离子弧焊接金属粉末向熔池的过渡过程. 高速摄像机采集频率为2 000 Hz,曝光时间为8 μs.图5为焊接过程连续的3张熔融金属过渡照片. 从图中可见,电弧中间部分亮度最大,亮度沿着垂直于电弧轴线的方向逐渐递减. 电弧中间深色黑点为金属粉末熔化后形成的熔融金属. 若将熔融金属理想化为球形,经过计算得出,红色圈中的熔融金属直径大约为265 μm. 可见熔融金属非常细小. 与MIG焊接中的熔滴过渡不同,金属粉末再压缩等离子弧焊接熔融金属尺寸较小、过渡分布比较分散. 熔融金属对熔池会产生一定的冲击作用.
3.4 电弧弧光光谱分析
焊接电弧的物理本质是等离子体,金属粉末进入电弧后会吸收电弧热量,发生熔化、蒸发、电离等,随后参与电弧导电,改变电弧的电气特性. 基于搭建的电弧弧光光谱采集系统,对常规等离子弧焊接和金属粉末再压缩等离子弧焊接的电弧弧光信息进行采集,并根据美国国家标准局(National Institute of Standards and Technology,NIST)提供的原子辐射线谱资料进行标定.图6为采集的弧光光谱图片. 从采集的光谱数据可以看出,在波长为230 ~ 270 nm范围内:常规等离子弧焊接中主要是Fe和Cr的特征谱线,如图6a所示;金属粉末再压缩等离子弧焊接中主要是Fe,Cr和Ni的特征谱线,如图6c所示;与常规等离子弧焊接相比,金属粉末再压缩等离子弧焊接中Fe和Cr元素的特征谱线明显增多,说明金属粉末进入电弧后发生了一定程度的电离. 光谱数据表明,在波长为230 ~ 270 nm范围内,金属粉末再压缩等离子弧焊接电弧等离子体与常规等离子弧焊接电弧等离子体明显不同.
在波长为760 ~ 850 nm范围内,常规等离子弧焊接中主要是Ar的特征谱线,如图6b所示;金属粉末再压缩等离子弧焊接中也主要是Ar的特征谱线,如图6d所示. 为了更直观地对比分析在760 ~ 850 nm波长的两种焊接工艺的光谱,制作了此范围的光谱数据曲线(图7). 光谱数据表明,金属粉末再压缩等离子弧焊接电弧光谱各个特征谱线峰强度均比常规等离子弧焊接电弧光谱对应的特征谱线峰强度小. 金属粉末再压缩等离子弧焊接光谱与常规等离子弧焊接光谱存在差异,这种差异对焊接过程产生的影响有待进一步研究.
4. 结论
(1)在相同焊接电流条件下,与常规等离子弧焊接工艺相比,金属粉末再压缩等离子弧焊接焊缝熔深更深、熔宽更窄.
(2)在相同焊接电流195 A条件下,与常规等离子弧焊接工艺相比,金属粉末再压缩等离子弧焊接电弧电压升高0.63 V.
(3)金属粉末等离子弧焊接熔融金属尺寸细小、过渡较分散.
(4)在波长为230 ~ 270 nm范围内,与常规等离子弧焊接相比,金属粉末再压缩等离子弧焊接中Fe和Cr元素的特征谱线明显增多.
(5)仅对金属粉末再压缩等离子弧焊接新工艺开展了初步的研究,还需要对金属粉末再压缩等离子弧焊接机理进行深入系统研究.
-
-
[1] 帅朋, 高珊, 吴志生, 等. 高强钢焊接研究现状[J]. 焊接技术, 2016, 45(6): 1 − 4. Shuai Peng, Gao Shan, Wu Zhisheng, et al. Research status of high strength steel welding[J]. Welding Technology, 2016, 45(6): 1 − 4.
[2] 张伟. 第三代高强钢激光点焊接头成形机理及断裂行为研究[D]. 合肥: 中国科学院大学, 2021. Zhang Wei. Formation mechanism and fracture behavior of laser spot welded third generation high-strength steel [ D ]. Hefei: University of Chinese Academy of Sciences , 2021.
[3] 胡银辉. DP1000高强钢点焊工艺及接头组织与性能[D]. 长春: 吉林大学, 2013. Hu Yinhui. Resistance spot welding process and the microstructures and properties of DP1000 high strength steel joints [D]. Changchun: Jilin University, 2013.
[4] Ohnishi, Kawahito, Mizutani, et al. Butt welding of thick, high strength steel plate with a high power laser and hot wire to improve tolerance to gap variance and control weld metal oxygen content[J]. Science and Technology of Welding and Joining, 2013, 18(4): 314 − 322. doi: 10.1179/1362171813Y.0000000108
[5] Katayama S, Kawahito Y, Mizutani M. Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects[J]. Physics Procedia, 2010, 5(2): 9 − 17.
[6] Otegui J L, Kerr H W, Burns D J, et al. Fatigue crack initiation from defects at weld toes in steel[J]. International Journal of Pressure Vessels and Piping, 1989, 38(5): 385 − 417. doi: 10.1016/0308-0161(89)90048-3
[7] 李进. 大港电厂1号汽轮机喷嘴室断裂事故金属分析[J]. 华北电力技术, 1991(8): 7 − 12. Li Jin. Metal analysis of No. 1 steam turbine nozzle chamber fracture accident in dagang power plant[J]. North China Electric Power Technology, 1991(8): 7 − 12.
[8] 叶华文, 黄若森, 周渝, 等. 澳大利亚焊接工字钢梁桥疲劳断裂事故分析[J]. 建筑结构, 2022, 52,(S1): 1251 − 1255. Ye Huawen, Huang Ruosen, Zhou Yu, et al. Fatigue fracture failure analysis of a welded I-beam steel bridge in Australia[J]. Building Structure, 2022, 52,(S1): 1251 − 1255.
[9] Chapetti M D, Otegui J L. Controlled toe waviness as a means to increase fatigue resistance of automatic welds in transverse loading[J]. International Journal of Fatigue, 1997, 19(10): 667 − 675. doi: 10.1016/S0142-1123(97)00061-3
[10] Ahiale K G, Oh Y, Choi W, et al. Microstructure and fatigue resistance of high strength dual phase steel welded with gas metal arc welding and plasma arc welding processes[J]. Metals and Materials International, 2013, 19(5): 933 − 939. doi: 10.1007/s12540-013-5005-3
[11] Tsuyoshi S, Naoki Y, Yoshikiyo T, et al. Effect of weld toe geometry on fatigue life of lap fillet welded ultra-high strength steel joints[J]. International Journal of Fatigue, 2018, 116: 409 − 420. doi: 10.1016/j.ijfatigue.2018.06.050
[12] 张晨星. 焊缝形貌对焊接强度的影响研究[D]. 秦皇岛: 燕山大学, 2022. Zhang Chenxing. Study on the influence of weld morphology on welding strength[D]. Qinhuangdao: Yanshan University, 2022.
[13] 王晓南, 郑知, 曾盼林, 等. 800 MPa级高强钢光纤激光焊接接头微观结构对硬度及疲劳性能的影响[J]. 中国激光, 2016, 43(12): 115 − 124. Wang Xiaonan, Zheng Zhi, Zeng Panlin, et al. Effects of microstructure on hardness and fatigue properties of 800 MPa high strength steel fiber laser welded joints[J]. Chinese Journal of Lasers, 2016, 43(12): 115 − 124.
[14] Wang W K, Liu Y, Guo Y, et al. High cycle fatigue and fracture behaviors of CrMoV/NiCrMoV dissimilar rotor welded joint at 280 ℃[J]. Materials Science & Engineering A, 2020: 139473.
[15] 镇顺利. 焊接T形接头疲劳寿命及残余应力释放研究[D]. 石家庄铁道大学, 2022. Zheng Shunli. Research on fatigue life and residual stress release of welded T-joints[D]. Shijiazhuang Tiedao University, 2022.
[16] 苗玉刚, 刘吉, 李小旭, 等. BC-MIG丝材电弧增材制造NAB/钢复合结构的微观组织与力学性能[J]. 焊接学报, 2023, 44(7): 56 − 62. Miao Yugang, Liu Ji, Li Xiaoxu. Microstructure and mechanical properties of NAB/steel composite structures by additive manufacturing with BC-MIG wire arc[J]. Transactions of the China Welding Institution, 2023, 44(7): 56 − 62.
[17] 苟川东. X80管道焊接残余应力及结构疲劳寿命数值分析[D]. 西安理工大学, 2022. Gou Chuandong. Numerical analysis of welding residual stress and structural fatigue life of X80 pipeline[D]. Xi 'an University of Technology, 2022.
[18] Anna E, Javad R, Sandra C, et al. The effect of surface treatment and orientation on fatigue crack growth rate and residual stress distribution of wire arc additively manufactured low carbon steel components[J]. Journal of Materials Research and Technology, 2023, 24: 2988 − 3004. doi: 10.1016/j.jmrt.2023.03.227
[19] 熊祥. 残余应力场对超高强钢焊接接头疲劳裂纹扩展行为的影响[D]. 哈尔滨工业大学, 2014. Xiong Xiang. Effect of residual stress field on fatigue crack propagation behavior at welded joints of ultra-high strength steel[D]. Harbin Institute of Technology, 2014.
[20] Leitner M , Mossler W, Putz A, et al. Effect of post-weld heat treatment on the fatigue strength of HFMI-treated mild steel joints[J]. Welding in the World, 2015, 59(6): 861 − 873.
[21] 宋威, 满铮, 徐杰, 等. 含错位效应十字焊接接头疲劳可靠性评估[J]. 焊接学报, 2023, 44(6): 20 − 26 + 34. doi: 10.12073/j.hjxb.20220629001 Song Wei, Man Zheng, Xu Jie, et al. Fatigue reliability analysis of load-carrying cruciform joints with misalignment effects[J]. Transactions of the China Welding Institution, 2023, 44(6): 20 − 26 + 34. doi: 10.12073/j.hjxb.20220629001
[22] Ceferino S, Nenad G, Tomaz V, et al. Effect of welding processes on the fatigue behaviour of ultra-high strength steel butt-welded joints[J]. Engineering Fracture Mechanics, 2022, 275: 108845. doi: 10.1016/j.engfracmech.2022.108845
[23] Tumer M, Schneider-Broskamp C, Enzinger N. Fusion welding of ultra-high strength structural steels-a review[J]. Journal of Manufacturing Processes, 2022, 82: 203 − 229. doi: 10.1016/j.jmapro.2022.07.049
[24] Dzioba I, Pala T. Influence of LWE on strength of welded joints of HSS S960-experimental and numerical analysis[J]. Materials, 2020, 13(3): 747 − 747. doi: 10.3390/ma13030747
[25] Hariprasath P, Sivaraj P, Balasubramanian V, et al. Effect of welding processes on high cycle fatigue behavior for naval grade HSLA joints: a fatigue strength prediction[J]. Engineering Failure Analysis, 2022, 142: 106783. doi: 10.1016/j.engfailanal.2022.106783
[26] Ravi S, Balasubramanian V, Babu S, et al. Assessment of some factors influencing the fatigue life of strength mis-matched HSLA steel weldments[J]. Materials & Design, 2004, 25(2): 125 − 135.
[27] Liu Y, Tsang K S, Subramaniam N A, et al. Structural fatigue investigation of thermite welded rail joints considering weld-induced residual stress and stress relaxation by cyclic load[J]. Engineering Structures, 2021, 235: 112033. doi: 10.1016/j.engstruct.2021.112033
[28] Ngoula T D, Beier H, Vormwald M. Fatigue crack growth in cruciform welded joints: influence of residual stresses and of the weld toe geometry[J]. International Journal of Fatigue, 2017, 101: 253 − 262.
[29] 赵智力, 杨建国, 刘雪松等. 10CrNi3MoV钢低匹配对接接头的拉伸疲劳性能[J]. 焊接学报, 2010, 31(3): 89 − 92. Zhao Zhili, Yang Jianguo, Liu Xuesong, et al. Mechanical and fatigue properties of undermatching butt joints of 10CrNi3MoV steel[J]. Transactions of the China Welding Institution, 2010, 31(3): 89 − 92 .
[30] Adam D, Marcell G, Janos L. The influence of mismatch effect on the high cycle fatigue resistance of high strength steel welded joints[J]. Advanced Materials Research, 2018, 1146: 73 − 83.
[31] Ravi S, Balasubramanian V, Nasser N S. Effect of mis-match ratio (MMR) on fatigue crack growth behaviour of HSLA steel welds[J]. Engineering Failure Analysis, 2003, 11(3): 413 − 428.
[32] Ravi S, Balasubramanian V, Nasser N S. Influences of Post Weld heat treatment on fatigue life prediction of gtrength mis-matched HSLA steel welds[J]. International Journal of Fatigue, 2005(27): 547 − 553
[33] Ravi S, Balasubramanian V, Nasser S N. Fatigue life prediction of strength mis-matched high strength low alloy steel welds[J]. Materials & Design, 2006, 27(4): 278 − 286.
[34] Shiga C, Murakawa H, Hiraoka K, et al. Elongated bead weld method for improvement of fatigue properties in welded joints of ship hull structures using low transformation temperature welding materials[J]. Welding in the World, 2017, 61(4): 769 − 788. doi: 10.1007/s40194-017-0439-8
[35] Smith C, Pistorius P G. The effect of a long post weld heat treatment on the integrity of a welded joint in a pressure vessel steel[J]. International Journal of Pressure Vessels and Piping, 1997, 70(3): 183 − 195. doi: 10.1016/S0308-0161(96)00029-4
[36] Feng X Y, Zheng K F, Heng J L, et al. Fatigue performance of rib-to-deck joints in orthotropic steel deck with PWHT[J]. Journal of Constructional Steel Research, 2022, 196: 107420. doi: 10.1016/j.jcsr.2022.107420
[37] Selvamani S, Vigneshwar M, Nikhil M, et al. Enhancing the fatigue properties of friction welded AISI 1020 grade steel joints using post weld heat treatment process in optimized condition[J]. Materials Today, 2019, 16(P2): 1251 − 1258.
[38] Yildirim C H, Marquis B G. Overview of fatigue data for high frequency mechanical impact treated welded joints[J]. Welding in the World, 2012, 56(7-8): 82 − 96. doi: 10.1007/BF03321368
[39] 朱鹏飞, 严宏志, 陈志, 等. 齿轮齿面喷丸强化研究现状与展望[J]. 表面技术, 2020, 49(4): 113 − 131. Zhu Pengfei, Yan Hongzhi, Chen Zhi, et al. Research status and prospect of shot peening of gear tooth flanks[J]. Surface Technology, 2020, 49(4): 113 − 131
[40] Malaki M, Ding H. A review of ultrasonic peening treatment[J]. Materials & Design, 2015, 87: 1072 − 1086.
[41] Zhan K, Jiang C H, Ji V. Effect of prestress state on surface layer characteristic of S30432 austenitic stainless steel in shot peening process[J]. Materials & Design, 2012, 42: 89 − 93.
[42] Scuracchio G B, Lima D B, Schon G C. Role of residual stresses induced by double peening on fatigue durability of automotive leaf springs[J]. Materials & Design, 2013, 47: 672 − 676.
[43] 王成. 喷丸强化过程的数值模拟与疲劳裂纹扩展行为研究[D]. 浙江工业大学, 2016. Wang Cheng. Study of shot peening simulation and fatigue crack growth behavior[D]. Zhejiang University of Technology, 2016.
[44] 李丰博, 肖桂枝. 喷丸对X70管线钢焊接接头组织与性能的影响[J]. 金属热处理, 2017, 42(9): 178 − 182. Li Fengbo, Xiao Guizhi. Effect of shot peening on microstructure and properties of pipeline steel welded joint[J]. Heat Treatment of Metals, 2017, 42(9): 178 − 182.
[45] 门延会, 王强, 严瑞强, 等. 喷丸对小型船舶钢板焊接接头的腐蚀和疲劳影响[J]. 船舶工程, 2021, 43(9): 101 − 104 + 110. Men Yanhui, Wang Qiang, Yan Ruiqiang, et al. Effects of shot blasting on corrosion and fatigue properties of welded joint of ship steel sheets[J]. Ship Engineering, 2021, 43(9): 101 − 104 + 110.
[46] Fueki R, Takahashi K. Improving the fatigue limit and rendering a defect harmless by laser peening for a high strength steel welded joint[J]. Optics & Laser Technology, 2021, 134: 106605.
[47] Yamaguchi N, Shiozaki T, Tamai Y. Micro-needle peening method to improve fatigue strength of arc-welded ultra-high strength steel joints[J]. Journal of Materials Processing Technology, 2021, 288: 116894. doi: 10.1016/j.jmatprotec.2020.116894
[48] 李东东, 郑云, 初明进, 等. 超声冲击强化技术处理焊接结构的研究进展[J]. 材料保护, 2019, 52(11): 139 − 145 + 150. Li Dongdong, Zheng Yun, Chu Mingjin, et al. Research progress of ultrasonic impact strengthening technology for welded structures[J]. Material protection, 2019, 52(11): 139 − 145 + 150.
[49] Abdullah A, Malaki M, Eskandari A. Strength enhancement of the welded structures by ultrasonic peening[J]. Materials & Design, 2012, 38: 7 − 18.
[50] 朱有利, 王燕礼, 边飞龙, 等. 金属材料超声表面强化技术的研究与应用进展[J]. 机械工程学报, 2014, 50(20): 35 − 45. doi: 10.3901/JME.2014.20.035 Zhu Youli, Wang Yanli, Bian Feilong, et al. Progresses on research and application of metal ultrasonic surface enhancement technologies[J]. Journal of Mechanical Engineering, 2014, 50(20): 35 − 45. doi: 10.3901/JME.2014.20.035
[51] 白易立, 王东坡, 邓彩艳, 等. 超声冲击强度对焊接接头疲劳寿命的影响[J]. 焊接学报, 2019, 40(12): 149 − 153. Bai Yili, Wang Dongpo, Deng Caiyan, et al. Effect of ultrasonic impact strength on fatigue life of welded joints[J]. Transactions of the China Welding Institution, 2019, 40(12): 149 − 153.
[52] Huang S, Qi Z J, Zhang A F, et al. Reducing the anisotropy of the mechanical properties of directed energy deposited Ti6Al4V alloy with inter-layer ultrasonic impact peening and heat treatment[J]. Materials Science & Engineering A, 2022, 857: 144123.
[53] 邓海鹏, 于影霞. 超声冲击对焊接接头表面质量的影响[J]. 表面技术, 2017, 46(2): 208 − 213. Deng Haipeng, Yu Yingxia. Effect of ultrasonic impact on the surface quality of welded joint[J]. Surface Technology, 2017, 46(2): 208 − 213.
[54] Haagensen P J, Statnikov E S, Lopezmartinez L. Introductory fatigue tests on welded joints in high strength steel and aluminum improved by various methods including ultrasonic impact treatment (UIT)[R]. Oslo, Norway: International Institute of Welding, 2008.
[55] 叶雄林, 朱有利. 超声冲击细化22SiMn2TiB超高强钢焊接接头晶粒研究[J]. 热加工工艺, 2006(6): 12 − 14. doi: 10.3969/j.issn.1001-3814.2006.06.006 Ye Xionglin, ZhuYouli. Investigation on fining grain of ultrahigh strength steel welding joint by ultrasonic impact treatment[J]. Hot Working Technology, 2006(6): 12 − 14. doi: 10.3969/j.issn.1001-3814.2006.06.006
[56] Lago J, Trsko L, Jambor M, et al. Fatigue life improvement of the high strength steel welded joints by ultrasonic impact peening[J]. Metals, 2019, 9(6): 618. doi: 10.3390/met9060618
[57] 刘博洋. 超声冲击处理对30CrMnSi钢焊接接头腐蚀和疲劳性能的影响[D]. 吉林大学, 2022. Liu Boyang. Effect of ultrasonic impact treatment on corrosion and fatigue properties of 30CrMnSi steel welded joint[D]. Changchun: Jilin University, 2022.
[58] Zhang H, Wang D P, Xia L Q, et al. Effects of ultrasonic impact treatment on pre-fatigue loaded high-strength steel welded joints[J]. International Journal of Fatigue, 2015, 80: 278 − 287. doi: 10.1016/j.ijfatigue.2015.06.017
[59] Hassan A , Franz U, Mohammad A. Fatigue life extension of existing welded structures via high frequency mechanical impact (HFMI) treatment[J]. Engineering Structures, 2021, 239: 112234.
[60] Yildirim C H, Marquis B G. Fatigue strength improvement factors for high strength steel welded joints treated by high frequency mechanical impact[J]. International Journal of Fatigue, 2012, 44: 168 − 176. doi: 10.1016/j.ijfatigue.2012.05.002
[61] Leitner M, Khurshid M, Barsoum Z. Stability of high frequency mechanical impact (HFMI) post-treatment induced residual stress states under cyclic loading of welded steel joints[J]. Engineering Structures, 2017, 143: 589 − 602. doi: 10.1016/j.engstruct.2017.04.046
[62] Shams-Hakimi P, Zamiri F, Al-Emrani M, et al. Experimental study of transverse attachment joints with 40 and 60 mm thick main plates, improved by high-frequency mechanical impact treatment (HFMI)[J]. Engineering Structures, 2018, 155: 251 − 266. doi: 10.1016/j.engstruct.2017.11.035
[63] 何兆儒, 沈一洲, 周晋, 等. 激光冲击强化的微观组织演变与性能研究进展[J]. 航空制造技术, 2021, 64(19): 48 − 58. He Zhaoru, Shen Yizhou, Zhou Jin, et al. Microstructure evolution and performant enhancement of laser shock peening[J]. Aeronautical Manufacturing Technology, 2021, 64(19): 48 − 58.
[64] Charles S, Wei T, YeL, et al. Laser shock processing and its effects on microstructure and properties of metal alloys: a review[J]. International Journal of Fatigue, 2002, 24(10): 1021 − 1036. doi: 10.1016/S0142-1123(02)00022-1
[65] 舒坤, 乔红超, 赵吉宾, 等. 激光冲击强化对焊缝组织性能影响的研究进展[J]. 表面技术, 2023, 52(7): 41 − 54. Shu Kun, Qiao Hongchao, Zhao Jibin, et al. Research progress on the effect of laser shock processing on the properties of weld[J]. Surface Technology, 2023, 52(7): 41 − 54.
[66] Yuji S, Tomoharu K, Yoshio M, et al. Development of a portable laser peening device and its effect on the fatigue properties of HT780 butt-welded joints[J]. Forces in Mechanics, 2022, 7: 100080. doi: 10.1016/j.finmec.2022.100080
[67] 符素宁, 武德安, 赵静, 等. 激光冲击强化对异种不锈钢焊接接头振动疲劳性能影响的分析[J]. 热加工工艺, 2023, 52(9): 56 − 60. Fu Suning, Wu Dean, Zhao Jing, et al. Analysis of the effect of laser shock peening on the vibration fatigue properties of dissimilar stainless steel welded joints[J]. Hot Working Technology, 2023, 52(9): 56 − 60.
[68] Ma R, Huang D, Zhang J, et al. Effects of rail flash-butt welding and post-weld heat treatment processes meeting different national standards on residual stresses of welded joints[J]. International Journal of Materials Research, 2020, 111(9): 780 − 787. doi: 10.3139/146.111935
[69] Dhakal B, Swaroop S. Review: laser shock peening as post welding treatment technique[J]. Journal of Manufacturing Processes, 2018, 32: 721 − 733. doi: 10.1016/j.jmapro.2018.04.006
[70] Zhang X S, Ma Y, Yang M, et al. A comprehensive review of fatigue behavior of laser shock peened metallic materials[J]. Theoretical and Applied Fracture Mechanics, 2022, 122: 103642. doi: 10.1016/j.tafmec.2022.103642
[71] Leitner M, Simunek D, Shah F S, et al. Numerical fatigue assessment of welded and HFMI-treated joints by notch stress/strain and fracture mechanical approaches[J]. Advances in Engineering Software, 2018, 120: 96 − 106. doi: 10.1016/j.advengsoft.2016.01.022
[72] Schubnell J, Pontner P, Wimpory R, et al. The influence of work hardening and residual stresses on the fatigue behavior of high frequency mechanical impact treated surface layers[J]. International Journal of Fatigue, 2020, 134: 105450. doi: 10.1016/j.ijfatigue.2019.105450
[73] Baumgartner J, Yildirim C H, Barsoum Z. Fatigue strength assessment of TIG-dressed welded steel joints by local approaches[J]. International Journal of Fatigue, 2019, 126: 72 − 78. doi: 10.1016/j.ijfatigue.2019.04.038
[74] Al-Karawi H, Polach U B, Al-Emrani M. Fatigue crack repair in welded structures via tungsten inert gas remelting and high frequency mechanical impact[J]. Journal of Constructional Steel Research, 2020, 172: 106200. doi: 10.1016/j.jcsr.2020.106200
[75] Moritz B, Jonas H, Shi S , et al. Fatigue strength of normal and high strength steel joints improved by weld profiling[J]. Engineering Structures, 2021, 246: 113030.
[76] Moritz B, Wang X R. A review of fatigue test data on weld toe grinding and weld profiling[J]. International Journal of Fatigue, 2021, 145: 106073.
[77] Mettanen H, Nykanen T, Skriko T, et al. Fatigue strength assessment of TIG-dressed ultra-high-strength steel fillet weld joints using the 4R method[J]. International Journal of Fatigue, 2020, 139: 105745. doi: 10.1016/j.ijfatigue.2020.105745
[78] Tuomas S, Antti A, Ilkka P, et al. Fatigue strength of laser-dressed non-load-carrying fillet weld joints made of ultra-high-strength steel[J]. Procedia Structural Integrity, 2022, 38: 393 − 400. doi: 10.1016/j.prostr.2022.03.040
[79] Tobias J, Torbjorn N, Zuheir B. Fatigue and ultimate strength assessment of post weld treated strenx® 1100 plus butt welds[J]. Procedia Structural Integrity, 2022, 38: 414 − 417.
[80] 王佳杰, 杨建国, 张敬强, 等. 随焊冲击碾压整形新方法及等承载接头拉伸与疲劳性能[J]. 焊接学报, 2012, 33(11): 35 − 38. Wang Jiajie, Yang Jianguo, Zhang Jingqiang, et al. A new weld shaping method with trailing impact rolling and of tensile and fatigue properties of equal load-carry capacity joints[J]. Transactions of the China Welding Institution, 2012, 33(11): 35 − 38.
[81] Maximilian K H, Steffen H, Christian D, et al. Automated geometry measurement and deep rolling of butt welds[J]. Welding in the World, 2022, 66(12): 2533 − 2547. doi: 10.1007/s40194-022-01346-w
[82] Jan S, Martin D, Michael L. Strength improvement of laser beam welded joints in cold worked high-manganese-steel by means of deep rolling[J]. Procedia CIRP, 2022, 111: 457 − 461. doi: 10.1016/j.procir.2022.08.065
[83] Danekas C, Heikebrugge S, Schubnell J, et al. Influence of deep rolling on surface layer condition and fatigue life of steel welded joints[J]. International Journal of Fatigue, 2022, 162: 106694.
[84] Sekban D, Aktarer S, Xue P, et al. Impact toughness of friction stir processed low carbon steel used in shipbuilding[J]. Materials Science & Engineering A, 2016, 672: 40 − 48.
[85] Xue P, Wang B B, Chen F F, et al. Microstructure and mechanical properties of friction stir processed Cu with an ideal ultrafine-grained structure[J]. Materials Characterization, 2016, 121: 187 − 194.
[86] Yamamoto H, Danno Y, Ito K, et al. Weld toe modification using spherical-tip WC tool FSP in fatigue strength improvement of high-strength low-alloy steel joints[J]. Materials & Design, 2018, 160: 1019 − 1028.
[87] Yamamoto H, Koga S, Ito K, et al. Fatigue strength improvement due to alloying steel weld toes with WC tool constituent elements through friction stir processing[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(9): 6203 − 6213.
[88] Assadi H, Kreye H, Gärtner F , et al. Cold spraying−a materials perspective[J]. Acta Materialia, 2016, 116: 382 − 407.
[89] Naoki Y , Tsuyoshi S , Yoshikiyo T , et al. Effect of cold spray deposition on fatigue strength of arc-welded ultra-high strength steel sheet[J]. International Journal of Fatigue, 2022, 161: 106876.
[90] Bagherifard S, Guagliano M. Fatigue performance of cold spray deposits: coating, repair and additive manufacturing cases[J]. International Journal of Fatigue, 2020, 139: 105744. doi: 10.1016/j.ijfatigue.2020.105744
[91] Xiong Y M, Zhang M X. The effect of cold sprayed coatings on the mechanical properties of AZ91D magnesium alloys[J]. Surface & Coatings Technology, 2014, 253: 89 − 95.
[92] Cavaliere P, Perrone A, Silvello A. Fatigue behaviour of Inconel 625 cold spray coatings[J]. Surface Engineering, 2018, 34(5): 380 − 391. doi: 10.1080/02670844.2017.1371872
-
期刊类型引用(3)
1. 潘睿志,林涛,李超,胡波. 基于深度学习的多尺寸汽车轮辋焊缝检测与定位系统研究. 光学精密工程. 2023(08): 1174-1187 . 百度学术
2. 刘岩,刘澳,张琳琳,杜安娜,刘兆真,贺春林. DP590镀锌双相钢CMT焊接接头气孔及锌层研究. 机械工程学报. 2023(16): 213-222 . 百度学术
3. 李文斌. 城市轨道交通车辆高强钢焊接用焊丝的选用方法. 焊接技术. 2022(03): 80-83 . 百度学术
其他类型引用(1)