高级检索

双轮廓参数对LPBF制备镍基高温合金表面成形的影响

丁宏伟, 马瑞, 常帅, 李明川, 李俐群

丁宏伟, 马瑞, 常帅, 李明川, 李俐群. 双轮廓参数对LPBF制备镍基高温合金表面成形的影响[J]. 焊接学报, 2024, 45(7): 10-18. DOI: 10.12073/j.hjxb.20230710003
引用本文: 丁宏伟, 马瑞, 常帅, 李明川, 李俐群. 双轮廓参数对LPBF制备镍基高温合金表面成形的影响[J]. 焊接学报, 2024, 45(7): 10-18. DOI: 10.12073/j.hjxb.20230710003
DING Hongwei, MA Rui, CHANG Shuai, LI Mingchuan, LI Liqun. Effect of parameters for dul-contours on the surface forming of nickel-based superalloys fabricated by LPBF[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 10-18. DOI: 10.12073/j.hjxb.20230710003
Citation: DING Hongwei, MA Rui, CHANG Shuai, LI Mingchuan, LI Liqun. Effect of parameters for dul-contours on the surface forming of nickel-based superalloys fabricated by LPBF[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 10-18. DOI: 10.12073/j.hjxb.20230710003

双轮廓参数对LPBF制备镍基高温合金表面成形的影响

详细信息
    作者简介:

    丁宏伟,硕士;主要从事微细流道激光选区熔化工艺特性研究;Email: 1325576632@qq.com

    通讯作者:

    李明川,博士;Email: 15317538065@163.com.

  • 中图分类号: TG 456.7;TH 142.1

Effect of parameters for dul-contours on the surface forming of nickel-based superalloys fabricated by LPBF

  • 摘要:

    激光粉末床熔融(laser powder bed fusion,LPBF)增材制造技术广泛用于航空航天领域复杂结构的镍基高温合金零件的一体化制造,但是其粗糙度问题限制了该项技术的应用. 基于此,通过采用双轮廓扫描策略优化表面成形质量,并研究轮廓参数的热输入对表面成形质量及微观组织、显微硬度的影响. 结果表明,上表面粗糙度Sa随上轮廓参数的热输入增加逐渐降低,并在功率为220 W,扫描速度为0.1 m/s时粗糙度Sa达到3.1 μm最优值,但在高热输入时近表面会形成匙孔诱发的孔洞缺陷,因此表面粗糙度优化需折衷考虑近表面孔洞缺陷;此外,双轮廓参数的热输入与下表面粗糙度之间没有明显的相关性.不同轮廓参数下制备的样品下表面粗糙度Sa在13.5 ~ 16.5 μm之间;轮廓参数的单向扫描策略导致了粗大柱状晶粒的形成,并且随着热输入的增加,上层轮廓层的显微硬度显著增加。

    Abstract:

    Although, laser powder bed fusion (LPBF) is widely used in the integrated manufacturing of nickel-based superalloy parts with complex structures in aerospace industry, it’s a relatively rough surface limits its application. In this paper, the surface forming quality was optimized by dual-contours scanning strategy. Meanwhile, the influences of the dual-contours parameters on the surface forming quality, microstructure and microhardness were investigated. The results show that the upper surface roughness Sa gradually decreases with the increase of the heat input of the dual-contours parameters. The roughness Sa reaches the optimal value of 3.1 μm when the power is 220 W and the scanning speed is 0.1 m/s. However, under high heat input, keyhole-induced hole defects will be formed on the near surface. Thus, surface roughness optimization requires comprehensive consideration of the keyhole-induced hole defects. In addition, there is no obvious correlation between the heat input of dual-contours parameters and the roughness of the lower surface. The lower surface roughness Sa of sample prepared under different contour parameters ranges from 13.5 μm to 16.5 μm. The unidirectional scanning strategy of the contour parameter results in the formation of coarse columnar grains, and the microhardness of the upper contour layer increases significantly with the increase of heat input.

  • 图  1   IN738LC合金粉末

    Figure  1.   IN738LC powder. (a) distribution of particle size; (b) SEM morphology

    图  2   打印模型

    Figure  2.   Printing model. (a) model dimension; (b) process parameter definition

    图  3   显微硬度测试策略

    Figure  3.   Microhardness testing strategy

    图  4   不同轮廓参数下的表面粗糙度Sa

    Figure  4.   Surface roughness Sa of sample under different contour parameters. (a) up-surface; (b) down-surface

    图  5   不同轮廓参数的上表面共聚焦形貌

    Figure  5.   Confocal microscope morphologies of up-surface with different contour parameters. (a) P = 200 W; (b) P = 180 W; (c) P = 140 W

    图  6   不同轮廓参数的下表面共聚焦形貌

    Figure  6.   Confocal microscope morphologies of down-surface with different contour parameters. (a) P = 200 W; (b) P = 180 W; (c) P = 140 W

    图  7   典型表面形貌特征

    Figure  7.   Typical morphology of surface. (a) up-surface; (b) down-surface

    图  8   不同扫描速度的上表面侧截面OM形貌(P=180 W)

    Figure  8.   OM images of dawn-surface cross-section for samples under different scanning speeds (P=180 W). (a) 0.1 m/s; (b) 0.3 m/s; (c) 0.6 m/s

    图  9   不同扫描速度的下表面侧截面OM形貌(P=105 W)

    Figure  9.   OM images of dawn-surface cross-section for samples under different scanning speeds (P=105 W). (a) 1.2 m/s; (b) 1.6 m/s; (c) 2.0 m/s

    图  10   典型侧截面SEM微观组织

    Figure  10.   Typical cross-section SEM microstructure. (a) up-surface; (b) in-filling area; (c) down-surface

    图  11   不同扫描速度的显微硬度分布(P=180 W)

    Figure  11.   Distributions of microhardness for samples under different scanning speeds (P=180 W)

    表  1   IN738LC合金粉末的化学成分 (质量分数,%)

    Table  1   Chemical compositions of IN738LC powder

    含量范围CrCoMoWTaAlTiNbCBZrNi
    最小值15.708.001.502.401.503.203.200.600.090.070.02余量
    最大值16.309.002.002.802.003.703.701.100.130.0120.08余量
    下载: 导出CSV
  • [1]

    Diegel O, Schutte J, Ferreira A, et al. Design for additive manufacturing process for a lightweight hydraulic manifold[J]. Additive Manufacturing, 2020, 36: 101446. doi: 10.1016/j.addma.2020.101446

    [2]

    Tan C, Weng F, Sui S, et al. Progress and perspectives in laser additive manufacturing of key aeroengine materials[J]. International Journal of Machine Tools & Manufacture, 2021, 170: 103804.

    [3]

    Uhlmann E, Bergmann A, Gridin W. Investigation on additive manufacturing of tungsten carbide-cobalt by selective laser melting [C]//15th Machining Innovations Conference for Aerospace Industry (MIC), Elsevier Science BV, 2015: 8-15.

    [4]

    Zhang M, Zhang B, Wen Y, et al. Research progress on selective laser melting processing for nickel-based superalloy[J]. International Journal of Minerals Metallurgy and Materials, 2022, 29: 369 − 388.

    [5]

    Wang X, Zhang S, Wang Z Y, et al. 3D printing externally reinforced layers for high-speed railway brake discs: Adaptability of SLM processes for manufacturing gradient materials[J]. Materials Today Communications, 2022, 31: 103778. doi: 10.1016/j.mtcomm.2022.103778

    [6]

    Sotov A V, Agapovichev A V, Smelov V G, et al. Investigation of the IN-738 superalloy microstructure and mechanical properties for the manufacturing of gas turbine engine nozzle guide vane by selective laser melting[J]. International Journal of Advance Manufacturing Technology, 2020, 107: 2525 − 2535. doi: 10.1007/s00170-020-05197-x

    [7]

    Caiazzo F, Cardaropoli F, Alfieri V, et al. Experimental analysis of selective laser melting process for Ti-6Al-4V turbine blade manufacturing[C]//XIX International Symposium on High-Power Laser Systems and Applications 2012, Spie-int SOC Optical Engineering, 2013, 8667H.

    [8]

    Wang H, Zhang X, Wang G B, et al. Selective laser melting of the hard-to-weld IN738LC superalloy: efforts to mitigate defects and the resultant microstructural and mechanical properties[J]. Journal of Alloys and Compounds, 2019, 807: 151662. doi: 10.1016/j.jallcom.2019.151662

    [9] 郭建亭. 高温合金材料学(上册)应用基础理论[M]. 北京: 科学出版社, 2008.

    Guo Jianting. Basic theory of application in superalloy materials Science (Part 1)[M]. Beijing: Science Press, 2008.

    [10]

    Dupont J N, Lippold J C, Kiser S D. Welding metallurgy and weldability of nickel-base alloys[M]. New Jersey: John Wiley & Sons, 2009.

    [11]

    Xu J H. Alloy design and characterization of γ′ strengthened nickel-based superalloys for additive manufacturing[D]. Linkping: Linkoping University, 2021.

    [12]

    Zhou W Z, Tian Y S, Tan Q B, et al. Effect of carbon content on the microstructure, tensile properties and cracking susceptibility of IN738 superalloy processed by laser powder bed fusion[J]. Additive Manufacturing, 2022, 58: 103016. doi: 10.1016/j.addma.2022.103016

    [13]

    Yu Z R, Guo C, Han S, et al. The Effect of Hf on solidification cracking inhibition of IN738LC processed by selective laser melting[J]. Materials Science and Engineering A, 2021, 804: 140733. doi: 10.1016/j.msea.2021.140733

    [14]

    Yong H U, Yang X K, Kang W J, et al. Effect of Zr content on crack formation and mechanical properties of IN738LC processed by selective laser melting[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(5): 1350 − 1362. doi: 10.1016/S1003-6326(21)65582-6

    [15] 许佳玉, 丁雨田, 胡勇, 等. 选区激光熔化成形Inconel 738合金裂纹形成机理及各向异性[J]. 稀有金属材料与工程, 2020, 49(8): 2791 − 2799.

    Xu Jiayu, Ding yutian, Hu Yong, et al. Crack forming mechanism and anisotropy of inconel 738 alloy by selective laser melting[J]. Rare Metal Materials and Engineering, 2020, 49(8): 2791 − 2799.

    [16]

    Tang Y T, Panwisawas C, Ghoussoub J N, et al. Alloys-by-design: Application to new superalloys for additive manufacturing[J]. Acta Materialia, 2021, 202: 417 − 436. doi: 10.1016/j.actamat.2020.09.023

    [17]

    Griffiths S, Tabasi H G, Ivas T, et al. Combining alloy and process modification for micro-crack mitigation in an additively manufactured Ni-base superalloy[J]. Additive Manufacturing, 2020, 36: 101443. doi: 10.1016/j.addma.2020.101443

    [18]

    Pupo Y, Monroy K, Ciurana J, et al. Influence of process parameters on surface quality of CoCrMo produced by selective laser melting[J]. International Journal of Advanced Manufacturing Technology, 2015, 80: 985 − 995. doi: 10.1007/s00170-015-7040-3

    [19]

    Strano G, Hao L, Everson R M, et al. Surface roughness analysis, modelling and prediction in selective laser melting[J]. Journal of Materials Processing Technology, 2013, 213(4): 589 − 597. doi: 10.1016/j.jmatprotec.2012.11.011

    [20] 江剑, 徐正扬, 王震. SLM零件的磨粒流动辅助电化学复合抛光方法研究[J]. 电加工与模具, 2023, 2: 47 − 52.

    Jiang Jian, Xu Zhengyang, Wang Zhen. Research on abrasive flow-assisted electrochemical composite polishing method for SLM parts[J]. Electromachining & Mould, 2023, 2: 47 − 52.

    [21] 高航, 李世宠, 付有志, 等. 金属增材制造格栅零件磨粒流抛光[J]. 航空学报, 2017, 38(10): 226 − 234.

    Gao Hang, Li Shichong, Fu Youzhi, et al. Abrasive flow machining of additively manufactured metal grilling parts[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10): 226 − 234.

    [22] 王宣平, 段合露, 孙玉文, 等. 增材制造金属零件抛光加工技术研究进展[J]. 表面技术, 2020, 49(4): 1 − 10.

    Wang Xuanping, Duan Helu, Sun Yuwen, et al. Advances in the research of polishing technologies for additive manufacturing metal parts[J]. Surface Technology, 2020, 49(4): 1 − 10.

    [23]

    Lyczkowska E, Szymczyk P, Dybala B, et al. Chemical polishing of scaffolds made of Ti-6Al-7Nb alloy by additive manufacturing[J]. Archives of Civil and Mechanical Engineering, 2014, 14(4): 586 − 594. doi: 10.1016/j.acme.2014.03.001

    [24]

    Park J W, Lee D W. Pulse electrochemical polishing for microrecesses based on a coulostatic analysis[J]. The International Journal of Advanced Manufacturing Technology, 2009, 40(7-8): 742 − 748. doi: 10.1007/s00170-008-1391-y

    [25]

    Tian Y, Tomus D, Rometsch P, et al. Influences of processing parameters on surface roughness of Hastelloy X produced by selective laser melting[J]. Additive Manufacturing, 2017, 13: 103 − 112. doi: 10.1016/j.addma.2016.10.010

    [26]

    Yasa E, Deckers J, Kruth J P, et al. The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts[J]. Rapid Prototyping Journal, 2011, 17(5): 312 − 327.

    [27]

    Wang D, Liu Y, Yang Y, et al. Theoretical and experimental study on surface roughness of 316L stainless steel metal parts obtained through selective laser melting[J]. Rapid Prototyping Journal, 2016, 22(4): 706 − 716. doi: 10.1108/RPJ-06-2015-0078

  • 期刊类型引用(3)

    1. 孙爽,许桂珍,刘贯军. Q355/SKH9高速钢激光重频焊接接头冲击韧性分析. 制造技术与机床. 2024(04): 33-37 . 百度学术
    2. 尹东坤,徐锴,滕彬,武鹏博,黄瑞生,温子缘. 万瓦级激光高效焊接研究现状. 电焊机. 2024(05): 1-16 . 百度学术
    3. 朱有坤,王钦伟,王远刚,秦川. 气体绝缘开关设备充气箱激光封焊工艺研究. 激光杂志. 2024(10): 236-239 . 百度学术

    其他类型引用(0)

图(11)  /  表(1)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  13
  • PDF下载量:  29
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-07-09
  • 网络出版日期:  2024-05-23
  • 刊出日期:  2024-07-23

目录

    /

    返回文章
    返回