高级检索

SLM工艺参数对表面成形质量的影响规律

吕海卿, 李明川, 马瑞, 常帅, 李俐群

吕海卿, 李明川, 马瑞, 常帅, 李俐群. SLM工艺参数对表面成形质量的影响规律[J]. 焊接学报, 2024, 45(6): 20-29. DOI: 10.12073/j.hjxb.20230615001
引用本文: 吕海卿, 李明川, 马瑞, 常帅, 李俐群. SLM工艺参数对表面成形质量的影响规律[J]. 焊接学报, 2024, 45(6): 20-29. DOI: 10.12073/j.hjxb.20230615001
LYU Haiqing, LI Mingchuan, MA Rui, CHANG Shuai, LI Liqun. Research on the influence of SLM process parameters on surface forming quality[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(6): 20-29. DOI: 10.12073/j.hjxb.20230615001
Citation: LYU Haiqing, LI Mingchuan, MA Rui, CHANG Shuai, LI Liqun. Research on the influence of SLM process parameters on surface forming quality[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(6): 20-29. DOI: 10.12073/j.hjxb.20230615001

SLM工艺参数对表面成形质量的影响规律

详细信息
    作者简介:

    吕海卿,博士研究生;主要从事激光增材制造及电化学技术研究. Email: lmy1135571214@163.com

    通讯作者:

    李俐群,博士,教授,博士研究生导师;Email: liliqun@hit.edu.cn

  • 中图分类号: TG 456

Research on the influence of SLM process parameters on surface forming quality

  • 摘要:

    较差的表面成形质量是选区激光熔化技术(selective laser melting, SLM) 在应用与推广中亟待解决的问题,凹凸不平的成形表面给SLM制备零件的力学性能和耐腐蚀能力带来了诸多不利影响. 文中通过SLM制备了包含向上、向下表面的45°倾斜试样以及包含垂直表面的90°垂直试样,以此3种不同典型建造角度的成形表面作为研究对象,对比研究了不同建造角度之下的表面成形特征,并分析讨论其成因,认为45°倾斜试样的上表面主要呈现为阶梯与轻微颗粒粘附特征,颗粒的严重粘附与团聚现象出现在下表面,90°垂直表面的成形质量则主要受到粘附颗粒的影响;结合表面三维形貌观察与非接触式表面粗糙度测量,对比探究了激光功率和扫描速度两种主要工艺参数对表面成形质量的影响规律. 最终,在各自的工艺参数窗口下,分别得到了4.0 μm、21.6 μm和7.8 μm的最光滑表面,优化的参数组合使得表面粗糙度水平实现了44%、47%和56%的降低效果. 此外,还从激光热输入、粉末颗粒与熔池热过程等角度分析了3种不同建造角度的目标表面上不同表面特征在变化的工艺参数下的转变规律,解释了工艺参数的影响规律并提出有助于获得更优表面成形质量的参数组合策略.

    Abstract:

    The inferior surface forming quality is a pressing issue that needs to be addressed for the application and promotion of SLM technology. The uneven forming surface has adverse effects on the mechanical performance and corrosion resistance of parts fabricated by SLM. Samples with a 45° inclination containing both up-facing surface and down-facing surface, as well as 90° vertical samples with vertical surfaces were fabricated by SLM. Taking these typical surfaces with 3 different construction angles as the research object, the surface formation characteristics under different construction angles were studied and compared, then the causes of these characteristics were analyzed and discussed. The SEM images showed that the up-facing surface of the 45° inclined sample mainly exhibited characteristics of stairs and slight particles adhesion, while severe particles adhesion and aggregation phenomena occured on the down-facing surface. The formation quality of the 90° vertical surface was primarily affected by the particles adhesion. Combining observation of the three-dimensional surface topography with non-contact surface roughness measurement and comparison, the influence of 2 main process parameters, laser power and scanning speed, on the surface formation quality was explored. Ultimately, under their respective process parameter windows, the smoothest surfaces of 4.0 μm, 21.6 μm, and 7.8 μm were achieved, and the optimized parameter combinations resulted in a reduction in surface roughness of 44%, 47%, and 56%, respectively. Additionally, the transformation patterns of different surface characteristics on the target surfaces of the 3 different construction angles under varying process parameters were analyzed from perspectives such as laser energy input, powder particles, and molten pool thermal processes. This helped to explain the influence of process parameters and propose strategies for parameter combinations leading to better surface formation quality.

  • 图  1   IN738LC原始粉末形貌

    Figure  1.   Morphology of original IN738LC powder

    图  2   IN738LC粉末粒径分布

    Figure  2.   IN738LC particle size distribution

    图  3   样件设计示意图

    Figure  3.   Schematic of specimens design. (a) 45° inclined specimens;(b) 90° vertical specimens

    图  4   扫描策略示意图

    Figure  4.   Schematic of scanning strategy

    图  5   测量策略示意图

    Figure  5.   Schematic of measurement strategy

    图  6   阶梯效应示意图

    Figure  6.   Schematic of stair effect

    图  7   不同建造角度下的表面形貌

    Figure  7.   Surface morphologies of different building angles. (a) 45° up-facing surface;(b) 45° down-facing surface;(c) 90°vertical surface

    图  8   不同参数组合下45°倾斜试样上表面的表面粗糙度水平

    Figure  8.   Surface roughness of 45° up-facing surface with different parameters combination

    图  9   不同参数组合下45°倾斜试样上表面的三维轮廓

    Figure  9.   3D profile of 45° up-facing surface with different parameters combination

    图  10   不同参数组合下45°倾斜试样下表面的表面粗糙度水平

    Figure  10.   Surface roughness of 45° down-facing surface with different parameters combination

    图  11   不同参数组合下45°倾斜试样下表面的三维轮廓

    Figure  11.   3D profile of 45° down-facing surface with different parameters combination

    图  12   不同参数组合下90°垂直表面的表面粗糙度水平

    Figure  12.   Surface roughness of 90° vertical surface with different parameters combination

    图  13   不同激光功率下90°垂直表面的三维轮廓

    Figure  13.   3D profile of 90° vertical surface surface with different parameters combination

    表  1   IN738LC粉末的名义化学成分(质量分数,%)

    Table  1   The nominal composition of IN738LC powder

    含量范围NiCrCoMoWTaAlTiNbCBZr
    最小值余量15.78.01.52.41.53.23.20.60.090.070.02
    最大值余量16.39.02.02.82.03.73.71.10.130.010.08
    下载: 导出CSV

    表  2   SLM工艺参数

    Table  2   SLM process parameters

    适用区域建造角度
    θ/ (o)
    激光功率
    P/W
    扫描速度
    v/ (mm·s−1)
    扫描间距
    H /μm
    表皮45°向上表面60,90,120300,400,50050
    90°垂直表面
    45°向下表面60,80,100800,1000120050
    轮廓45°向上表面150300
    90°垂直表面100,140,180500,700,900
    45°向下表面501600
    下载: 导出CSV
  • [1]

    Berman B. 3-D printing: the new industrial revolution[J]. Business Horizons, 2012, 55(2): 155 − 162. doi: 10.1016/j.bushor.2011.11.003

    [2]

    Thompson S M, Aspin Z S, Shamsaei N, et al. Additive manufacturing of heat exchangers: a case study on a multi-layered Ti-6Al-4V oscillating heat pipe[J]. Additive Manufacturing, 2015, 8: 163 − 174. doi: 10.1016/j.addma.2015.09.003

    [3]

    Chang S, Liu A H, Ong C Y A, et al. Highly effective smoothening of 3D-printed metal structures via overpotential electrochemical polishing[J]. Materials Research Letters, 2019, 7(7): 282 − 289. doi: 10.1080/21663831.2019.1601645

    [4]

    Li K, Ji C, Bai S W, et al. Selective laser melting of magnesium alloys: necessity, formability, performance, optimization and applications[J]. Journal of Materials Science & Technology, 2023, 154: 65 − 93.

    [5]

    Demir A G, Previtali B. Additive manufacturing of cardiovascular CoCr stents by selective laser melting[J]. Materials & Design, 2017, 119: 338 − 350.

    [6]

    Leon A, Aghion E. Effect of surface roughness on corrosion fatigue performance of AlSi10Mg alloy produced by selective laser melting (SLM)[J]. Materials Characterization, 2017, 131: 188 − 194. doi: 10.1016/j.matchar.2017.06.029

    [7]

    Gu D D, Shen Y F. Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods[J]. Materials & Design, 2009, 30(8): 2903 − 2910.

    [8]

    Rombouts M, Froyen L, Bourell D, et al. Roughness after laser melting of iron based powders[C]// Virtual Modeling and Rapid Manufacturing: Advanced Research in Virtual and Rapid Prototyping, January 1, 2005, Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Leuven, Belgium. London: CRC Press, 2007: 329-335.

    [9]

    Rombouts M, Froyen L, Gusarov A V, et al. Photopyroelectric measurement of thermal conductivity of metallic powders[J]. Journal of Applied Physics, 2005, 97(2): 4905 − 4914.

    [10]

    Qiu C, Panwisawas C, Ward M, et al. On the role of melt flow into the surface structure and porosity development during selective laser melting[J]. Acta Materialia, 2015, 96: 72 − 79. doi: 10.1016/j.actamat.2015.06.004

    [11]

    Shi X Z, Yan C, Feng W W, et al. Effect of high layer thickness on surface quality and defect behavior of Ti-6Al-4V fabricated by selective laser melting[J]. Optics & Laser Technology, 2020, 132: 106471.

    [12]

    Wang D, Liu Y, Yang Y Q, et al. Theoretical and experimental study on surface roughness of 316L stainless steel metal parts obtained through selective laser melting[J]. Rapid Prototyping Journal, 2016, 22(4): 706 − 716. doi: 10.1108/RPJ-06-2015-0078

    [13]

    Mumtaz K, Hopkinson N. Top surface and side roughness of Inconel 625 parts processed using selective laser melting[J]. Rapid Prototyping Journal, 2009, 15(2): 96 − 103. doi: 10.1108/13552540910943397

    [14]

    Zhang T Y, Yuan L. Understanding surface roughness on vertical surfaces of 316 L stainless steel in laser powder bed fusion additive manufacturing[J]. Powder Technology, 2022, 411: 117957. doi: 10.1016/j.powtec.2022.117957

    [15]

    Yang T, Liu T T, Liao W H, et al. The influence of process parameters on vertical surface roughness of the AlSi10Mg parts fabricated by selective laser melting[J]. Journal of Materials Processing Technology, 2019, 266: 26 − 36. doi: 10.1016/j.jmatprotec.2018.10.015

    [16]

    Han X S, Zhu H H, Nie X J, et al. Investigation on selective laser melting AlSi10Mg cellular lattice strut: molten pool morphology, surface roughness and dimensional accuracy[J]. Materials, 2018, 11(3): 392. doi: 10.3390/ma11030392

    [17]

    Tian Y, Tomus D, Huang A J, et al. Experimental and statistical analysis on process parameters and surface roughness relationship for selective laser melting of Hastelloy X[J]. Rapid Prototyping Journal, 2019, 25(7): 1309 − 1318. doi: 10.1108/RPJ-01-2019-0013

    [18]

    Yang T, Liu T T, Liao W H, et al. Effect of processing parameters on overhanging surface roughness during laser powder bed fusion of AlSi10Mg[J]. Journal of Manufacturing Processes, 2021, 61: 440 − 453. doi: 10.1016/j.jmapro.2020.11.030

    [19]

    Lee E S, Shin T H. An evaluation of the machinability of nitinol shape memory alloy by electrochemical polishing[J]. Journal of Mechanical Science and Technology, 2011, 25(4): 963 − 969. doi: 10.1007/s12206-011-0209-2

    [20]

    Strano G, Hao L, Everson R M, et al. Surface roughness analysis, modelling and prediction in selective laser melting[J]. Journal of Materials Processing Technology, 2013, 213(4): 589 − 597. doi: 10.1016/j.jmatprotec.2012.11.011

    [21]

    Chen Z E, Wu X H, Tomus D, et al. Surface roughness of selective laser melted Ti-6Al-4V alloy components[J]. Additive Manufacturing, 2018, 21: 91 − 103. doi: 10.1016/j.addma.2018.02.009

    [22]

    Ramos J A, Bourell D L, Beaman J J. Surface over-melt during laser polishing of indirect-SLS metal parts[C]//2002 MRS Fall Meeting & Exhibit: Symposium LL-Rapid Prototyping Technologies, December 1-5, 2002, The University of Texas at Austin, Austin, Texas. Berlin: Springer Nature, 2003: 53-64.

    [23]

    Nasab M H, Gastaldi D, Lecis N F, et al. On morphological surface features of the parts printed by selective laser melting (SLM)[J]. Additive Manufacturing, 2018, 24: 373 − 377. doi: 10.1016/j.addma.2018.10.011

    [24]

    Kruth J P, Froyen L, Van Vaerenbergh J, et al. Selective laser melting of iron-based powder: observation of melting mechanism and densification behavior via point-track-surface-part research[J]. Journal of Materials Processing Technology, 2004, 149: 616 − 622. doi: 10.1016/j.jmatprotec.2003.11.051

    [25]

    Liu Y, Yang Y Q, Mai S Z, et al. Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder[J]. Materials & Design, 2015, 87: 797 − 806.

    [26]

    Calignano F, Manfredi D, Ambrosio E P, et al. Influence of process parameters on surface roughness of aluminum parts produced by DMLS[J]. The International Journal of Advanced Manufacturing Technology, 2013, 67: 2743 − 2751. doi: 10.1007/s00170-012-4688-9

    [27]

    Streek A, Regenfuss P, Exner H. Fundamentals of energy conversion and dissipation in powder layers during laser micro sintering[C]//LiM 2013: Proceedings of the Seventh International WLT Conference on Lasers in Manufacturing, May 13-16, 2013, Munich, Germany. Berlin: Springer Nature, 2013: 858-869.

    [28]

    Bayat M, Thanki A, Mohanty S, et al. Keyhole-induced porosities in laser-based powder bed fusion (L-PBF) of Ti6Al4V: high-fidelity modelling and experimental validation[J]. Additive Manufacturing, 2019, 30: 100835. doi: 10.1016/j.addma.2019.100835

    [29]

    Tian Y, Tomus D, Rometsch P, et al. Influences of processing parameters on surface roughness of Hastelloy X produced by selective laser melting[J]. Additive Manufacturing, 2017, 13: 103 − 12. doi: 10.1016/j.addma.2016.10.010

    [30]

    Charles A, Elkaseer A, Paggi U, et al. Down-facing surfaces in laser powder bed fusion of Ti6Al4V: effect of dross formation on dimensional accuracy and surface texture[J]. Additive Manufacturing, 2021, 46: 102148. doi: 10.1016/j.addma.2021.102148

    [31]

    Wang D, Yang Y Q, Yi Z H, et al. Research on the fabricating quality optimization of the overhanging surface in SLM process[J]. The International Journal of Advanced Manufacturing Technology, 2013, 65: 1471 − 1484. doi: 10.1007/s00170-012-4271-4

    [32]

    Mutke C, Geenen K, Roettger A, et al. Interaction between laser radiation and metallic powder of 316L austenitic steel during selective laser melting[J]. Materials Characterization, 2018, 145: 337 − 346. doi: 10.1016/j.matchar.2018.08.061

    [33]

    Chen Z, Xiang Y, Wei Z Y, et al. Thermal dynamic behavior during selective laser melting of K418 superalloy: numerical simulation and experimental verification[J]. Applied Physics A, 2018, 124(4): 313. doi: 10.1007/s00339-018-1737-8

    [34]

    Wischeropp T M, Emmelmann C, Brandt M, et al. Measurement of actual powder layer height and packing density in a single layer in selective laser melting[J]. Additive Manufacturing, 2019, 28: 176 − 83. doi: 10.1016/j.addma.2019.04.019

图(13)  /  表(2)
计量
  • 文章访问数:  380
  • HTML全文浏览量:  67
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-14
  • 网络出版日期:  2024-06-02
  • 刊出日期:  2024-06-24

目录

    /

    返回文章
    返回