Interface microstructure and properties of nickel/copper foil reflow soldering and laser soldering
-
摘要:
基于镍箔“桥”替代铝铜直接焊接的背景下,利用回流焊、半导体激光钎焊对镍铜箔片进行异质连接.对比分析了接头形貌及界面显微组织的形成机制,并对其力学性能进行评价. 结果表明,两种焊接接头成形良好,且无焊接缺陷产生;激光钎焊焊缝内由锡的固溶体和具有等轴晶形态的Cu-Sn金属间化合物组成,而回流焊焊缝则为锡的固溶体;两种焊接接头铜-锡、镍-锡界面均呈现不同形貌,且铜-锡界面层厚度大于镍-锡界面层. 回流焊在铜-锡界面处显微组织呈扇贝状分布,其组成为铜固溶体→Cu3Sn金属间化合物→Cu6Sn5金属间化合物;激光钎焊铜-锡界面处由多种Cu-Sn金属间化合物组成. 在镍-锡界面处,回流焊呈现连续分布的(Cu, Ni)6Sn5金属间化合物,而激光钎焊则是由短棒状(Cu, Ni)3Sn4 与条状(Cu, Ni)6Sn5组成,两种焊接接头最大剪切力可达320 N以上,远高于实际生产要求. 基于此研究结果,可进一步明确激光钎焊是替代镍/铜箔片回流焊连接的可行性技术.
Abstract:Under the background of replacing aluminum copper direct welding with nickel foil "bridge", heterogeneous connection of nickel copper foil is carried out using reflow soldering and semiconductor laser soldering. A comparative analysis was conducted on the formation mechanism of joint morphology, weld seam and interface microstructure, and their mechanical properties were evaluated. The research results showed that the weld defects were not detected for two welded joints. The microstructure of laser soldering welds was composed of Sn solid solution and Cu-Sn intermetallic compounds (IMCs) with equiaxed crystal morphology, while microstructure of reflow soldering welds was composed of Sn solid solution. The Cu-Sn and Ni-Sn interfaces of the two joints showed different morphologies, and the thickness of the Cu-Sn interface layer was greater than that of Ni-Sn interface. The microstructure at the Cu-Sn interface during reflow soldering was scallop-shaped, consisting of Cu solid solution →Cu3Sn IMCs→ Cu6Sn5 IMCs. For laser soldering joints, the Cu-Sn interface consisted of various Cu-Sn IMCs. At the Ni-Sn interface, a continuous distribution of (Cu, Ni)6Sn5 IMCs was presented in the reflow soldering welds, while the short rod-shaped (Cu, Ni)3Sn4 and strip shaped (Cu, Ni)6Sn5 was showed in the laser soldering welds. The maximum shear force values of the two joints can reach over 320 N, far higher than actual production requirements. Based on this research results, it further demonstrated that laser soldering is a feasible technology to replace reflow soldering for the nickel/copper foil connection.
-
Keywords:
- reflow soldering /
- laser soldering /
- Sn solder /
- intermetallic compounds
-
0. 序言
高能同步辐射光源(high energy photon source, HEPS)是国家重大科技基础设施建设“十三五”规划确定建设的10个重大科技基础设施之一, 是基础科学和工程科学等领域原创性、突破性创新研究的重要支撑平台.真空系统是高能同步辐射光源的基础工程,束流只有在真空环境中运行,才能保持足够的寿命,并且不断地被积累和加速,达到设计的能量和流强,并提供高亮度的同步辐射光.
HEPS采用CuCrZr材料为储存环真空盒的主要材料,Inconel 625作为快校正磁铁内部薄壁真空盒材料,空间紧张区域两种材料合金管需要对接焊[1-2],为保证焊接后真空盒的性能,CuCrZr与Inconel 625材料的焊接性能的研究极为重要.
国内外相关研究学者针对不同的工作要求采用不同的焊接方式对CuCrZr与Inconel 625等同种材料或者相关材料的焊接接头进行焊接性能研究,对焊缝进行了微观组织以及力学性能的研究[3-10],结果表明,CuCrZr与Inconel 625具有较好的焊接性,但是针对具体的焊接工艺以及不同的焊接方式下焊接工艺参数对焊缝性能的影响研究较少. 电子束焊接作为高能束焊接的一种,束流的功率密度高,焊缝深宽比大,工件产生的变形小[11-21],非常适合Inconel 625这类高熔点金属管件的焊接.
为研究异种材料电子束焊接工艺参数对接头微观组织和力学性能的影响,对CuCrZr与Inconel 625管件进行了电子束对接焊试验,采用光学显微镜、扫描电子显微镜和电子万能试验机对各组试样的接头形貌、微观组织及力学性能进行观察和分析,从而为HEPS加速器储存环真空盒异种材质合金管的焊接提供工艺指导以及理论依据.
1. 试验方法
项目主要研究异种材质管件的对接焊工艺,所采用的试验材料主要为外径24 mm、内径22 mm的CuCrZr和Inconel 625圆形合金管件,其化学成分如表1和表2所示.
表 1 Inconel 625化学成分(质量分数,%)Table 1. Chemical compositions of Inconel 625C Si Mn Al Ti Ni Cr Fe Co Nb 0.01 0.50 0.50 0.40 0.40 58 ~ 68 20 ~ 30 5.0 1.0 3.1 ~ 4.1 表 2 CuCrZr化学成分(质量分数,%)Table 2. Chemical compositions of CuCrZrAl Mg Zr Cr Fe Si P 杂质 Cu 0.1 ~ 0.25 0.1 ~ .0.25 0.65 0.65 0.05 0.05 0.01 0.2 余量 CuCrZr/Inconel 625异种材质管件电子束对接焊前,需要对异种材料管件端口进行处理,首先采用砂纸将管件焊接面的内壁与外壁打磨去除氧化膜.采用丙酮擦拭整个对接口去除油脂.
将准备好的CuCrZr管件与Inconel 625管件分别装夹到夹具上,装夹时保证对焊管件的同心度. 当真空度达到0.017 Pa时,进行电子束对接焊试验,试验所采用的焊接工艺参数列于表3中. 由于管件壁厚较薄,因此采用电子束聚焦于管件表面的方式.由于Inconel 625与CuCrZr之间物理性能差异较大,CuCrZr有较强的导热性,因此在焊接时改变电子束焦点的作用位置,采用偏束焊接,使电子束聚焦于CuCrZr管侧,偏束距离分别为0.6,0.8 mm. 将焊好的管件切割成尺寸为8 mm × 5 mm的金相试样,随后对镶嵌后的试样采用80号 ~ 5000号砂纸逐级打磨,然后用金刚石抛光剂进行机械抛光.抛光直至试样成为无划痕、无污染、光滑的镜面后,将CuCrZr/Inconel 625焊接试样放置于3 g FeCl3 + 2 mLHCl + 96 mL乙醇的腐蚀剂中对观察面进行化学浸蚀,腐蚀时间约5 s. 使用奥林巴斯GX71型光学金相显微镜下观察不同偏束距离下试样焊缝的横截面形貌,使用Quanta 200FEG型场发射扫描电镜(scanning electron microscope, SEM对试样焊缝微观形貌观察,对接头界面物相进行鉴定分析. 采用岛津AGXplus250kN型电子万能试验机对焊接接头的抗拉强度进行测试.
表 3 焊接工艺参数Table 3. Welding process parameters编号 加速电压
U/kV束流
I/mA焊接速度
v/(mm·min−1)偏束距离
l/mm1 70 11 600 0.6 2 70 11 600 0.8 2. 试验结果与分析
2.1 异种材料电子束对接焊宏观形貌
图1为CuCrZr/Inconel 625异种管件对接接头表面成形. 当偏束距离为0.6 mm时,焊缝表面光滑,但是在接头处的CuCrZr管侧出现了轻微的咬边缺陷,如图1a所示. 当偏束距离增加至0.8 mm时,咬边焊接缺陷消失,焊缝的熔宽出现一定程度的增加,焊缝表面有致密的鱼鳞纹,有一定的余高,表面成形良好,如图1b所示.
图2为沿中心线切开的CuCrZr/Inconel 625异种材料管件焊缝背面成形. 由于较高的焊接热输入,焊缝内壁出现了由于Inconel 625管件蒸气冷却所导致的黑色镀层区域. 当偏束距离为0.6或者0.8 mm时,焊缝背面成形均良好,未出现上凹缺陷,且在电子束收弧处未出现缺陷.
图3为采用砂纸打磨后CuCrZr/Inconel 625异种材料管件焊缝表面成形. 砂纸打磨可以将金属蒸气产生的黑色镀层完全清除.
图4为不同偏束距离下CuCrZr/Inconel 625异种材质管件的焊缝横截面形貌. 从图4a可以看出,焊缝呈现出上、下宽,中间窄的哑铃型. 当偏束距离增加至0.8 mm时,焊缝的横截面外形未发生明显改变,但是从颜色上可以看出,随着偏束距离的增加,CuCrZr母材的熔化量增加,这使焊缝中的铜含量有所增加.
2.2 电子束对接焊焊缝微观组织
图5为偏束距离为0.6 mm时CuCrZr/Inconel 625焊缝的微观组织形貌. 从图5a与图5b可以看到,焊缝靠近Inconel 625管侧以及焊缝中部有圆球状、针状和树枝状的Ni基固溶体,Cu固溶体则分布在Ni基固溶体的四周. 如图5c所示,随着距Inconel 625管的距离增加,焊缝内部镍含量逐渐降低,但是焊缝内部依旧为球状的Ni基固溶体占据主要位置. 在熔合线右侧距离较近处由一层柱状晶粒构成,随着距焊缝的距离增加,柱状晶变为等轴晶,且晶粒尺寸逐渐减小.
图6为偏束距离0.8 mm时 CuCrZr/Inconel 625焊缝不同位置处的微观组织形貌. 随着偏束距离的增加,CuCrZr管的熔化量明显提高,Cu固溶体成为了整个焊缝中的主要组成部分,而Ni基固溶体则以大小不均匀的球状分布在焊缝中的Cu基体中. 焊缝中Cu基体的晶粒以两侧柱状晶粒和中心粗大的等轴晶粒构成.
2.3 电子束对接焊焊缝元素分布分析
图7为CuCrZr/Inconel 625界面处的扫描电镜显微照片. 图8为沿图7a处的线扫描结果,表4为图7b中各点的能谱分析结果. 在远离CuCrZr/Inconel 625界面处的焊缝中,如表4中B点以及C点结果所示,镍含量维持在10%左右,当扫描路径遇到球状的Ni基固溶体时,如表4中A点结果所示,镍含量会出现明显的上升,且Ni含量的变化与Cr元素变化基本一致.
根据二元相图[22-23]以及表4的能谱结果可以推断出,焊缝内部未生成金属间化合物. 焊缝中的相主要是圆球形的Ni基固溶体和作为基体的Cu固溶体,使得焊缝具有较好的综合力学性能.
表 4 CuCrZr/Inconel 625能谱分析结果(原子分数,%)Table 4. Energy spectrum analysis of CuCrZr/Inconel 625位置 Zr Nb Mn Cr Ni Cu 可能相 A 1.36 6.88 2.97 24.03 62.80 1.96 Ni基固溶体 B 1.11 4.73 0.19 8.37 6.15 79.44 Cu基固溶体 C 1.05 4.65 0.13 4.21 8.93 81.03 Cu基固溶体 2.4 电子束对接焊接头的力学性能
为确定接头的抗拉强度,试验对象选取偏束距离为0.8 mm的CuCrZr/Inconel 625电子束对接焊接头,在0.5 mm/min拉伸速率下测试试样的抗拉强度. 如图9所示,随着拉伸位移的增大,CuCrZr/Inconel 625接头存在弹性变形阶段,继续拉伸,在拉伸过程中存在明显的塑性变形阶段,直至最后断裂,抗拉强度随着位移的增大试样最大抗拉强度为304 MPa.
通过对CuCrZr与Inconel 625关键焊缝试样进行拉伸测试,从拉伸试样断裂后形态可以看到,所有拉伸试样均断裂于CuCrZr管热影响区处.这是由于在CuCrZr侧的热影响区中晶粒发生再结晶,产生异常生长,晶粒的粗大使得材料的强度降低. 另外,CuCrZr与Inconel 625之间的热导率和线性膨胀系数也有很大差异,因此在冷却过程中产生巨大的内部应力. 这些不利影响最终导致接头在拉伸过程中断裂.
图10为试样的断口形貌. 从图10可以看到,断口表面明显的韧窝,可以证明该断裂属于韧性断裂. 该过程是在铜的晶界附近形成微孔,并且在外力作用下微孔连续生长,最终发生断裂.
3. 结论
(1) 当偏束距离为0.6和0.8 mm时,CuCrZr/Inconel 625管件接头的焊缝成形良好,呈现出上、下宽,中间窄的哑铃型,随着偏束距离的增加,焊缝中的铜含量增加.
(2) CuCrZr/Inconel 625管件接头焊缝中的相主要是圆球形的Ni基固溶体以及作为基体的Cu固溶体,使得焊缝具有较好的综合力学性能.
(3) 偏束距离为0.8 mm时CuCrZr/Inconel 625焊接试验件的最大抗拉强度达到304 MPa,断裂于CuCrZr侧热影响区.
-
-
[1] 吴博尧, 秦磊, 张庆茂, 等. 基于视觉的动力电池焊后质量检测[J]. 焊接学报, 2018, 39(9): 122 − 128. Wu Boyao, Qin Lei, Zhang Qingmao, et al. Research on vision-based post-welding quality inspection of power battery[J]. Transactions of the China Welding Institution, 2018, 39(9): 122 − 128.
[2] Kumar N, Masters I, Das A. In-depth evaluation of laser-welded similar and dissimilar material tab-to-busbar electrical interconnects for electric vehicle battery pack[J]. Journal of Manufacturing Processes, 2021, 70: 78 − 96. doi: 10.1016/j.jmapro.2021.08.025
[3] Yang P, Tarascon J M. Towards systems materials engineering[J]. Nature Materials, 2012, 11: 560 − 563. doi: 10.1038/nmat3367
[4] Lerra F, Ascari A, Fortunato A. The influence of laser pulse shape and separation distance on dissimilar welding of Al and Cu films[J]. Journal of Manufacturing Processes, 2019, 45: 331 − 339. doi: 10.1016/j.jmapro.2019.07.015
[5] 李东, 赵杨洋, 张延松. 焊接能量对铝/铜超声波焊接接头显微组织的影响[J]. 焊接学报, 2014, 35(2): 47-50. Li Dong, Zhao Yangyang, Zhang Yansong. Effect of welding energy on microstructures of the Al/Cu joints obtained by ultrasonic welding[J]. Transactions of the China Welding Institution, 2014, 35(2): 47-50.
[6] 邓呈敏, 程东海, 张华, 等. 焊丝成分对铝/铜激光熔钎焊接头组织和性能的影响[J]. 焊接学报, 2022, 43(1): 16 − 21. Deng Chengmin, Cheng Donghai, Zhang Hua, et al. Effect of welding wire composition on microstucture and properties on Al/Cu laser welding-brazing joints[J]. Transactions of the China Welding Institution, 2022, 43(1): 16 − 21.
[7] 吴小伟, 沈以赴, 李博, 等. 铝—铜搅拌摩擦焊搭接焊缝共晶组织形成与抑制[J]. 焊接学报, 2014, 35(1): 87 − 90. Wu Xiaowei, Shen Yifu, Li Bo, et al. Formation and inhibition of eutectics in Al/Cu dissimilar metal lap joint[J]. Transactions of the China Welding Institution, 2014, 35(1): 87 − 90.
[8] Yang J W, Cao B, He X C, et al. Microstructure evolution and mechanical properties of Cu–Al joints by ultrasonic welding[J]. Science and Technology of Welding and Joining, 2015, 19(6): 500 − 504.
[9] Chu K, Sohn Y, Moon C. A comparative study of Cn/Sn/Cu and Ni/Sn/Ni solder joints for low temperature stable transient liquid phase bonding[J]. Scripta Materialia, 2015, 109: 113 − 117. doi: 10.1016/j.scriptamat.2015.07.032
[10] Wang S J, Liu C Y. Study of interaction between Cu-Sn and Ni-Sn interfacial reactions by Ni-Sn3.5Ag-Cu sandwich structure[J]. Journal of Electronic Materials, 2003, 32(11): 1303 − 1309. doi: 10.1007/s11664-003-0027-0
[11] Zhong Y, Zhao N, Dong W, et al. Coupling effect of thermomigration and cross-interaction on evolution of intermetallic compounds in Cu/Sn/Ni ultrafine interconnects undergoing TLP bonding[J]. Journal of materials research, 2017, 32(16): 3128 − 3136. doi: 10.1557/jmr.2017.171
[12] Huan P C, Tang X X, Sun Q, et al. Comparative study of solder wettability on aluminum substrate and microstructure-properties of Cu-based component/aluminum laser soldering joint[J]. Materials & Design, 2022, 215: 11048.
[13] Kordás K, Pap A E, Tóth G, et al. Laser soldering of flip-chips[J]. Optics and Lasers in Engineering, 2006, 44(2): 112 − 121. doi: 10.1016/j.optlaseng.2005.03.002
[14] Yang Z, Li L, Chen W, et al. Numerical and experimental study on laser soldering process of SnAgCu lead-free solder[J]. Materials Chemistry and Physics, 2021, 273: 125046. doi: 10.1016/j.matchemphys.2021.125046
[15] Kunwar A, An L L, Liu J H, et al. A data-driven framework to predict the morphology of interfacial Cu6Sn5 IMC in SAC/Cu system during laser soldering[J]. Journal of Materials Science & Technology, 2020, 50: 115 − 127.
[16] Joo H S, Lee C J, Min K D, et al. Mechanical properties and microstructural evolution of solder alloys fabricated using laser-assisted bonding[J]. Journal of Materials Science:Materials in Electronics, 2020, 31(24): 22926 − 22932. doi: 10.1007/s10854-020-04819-0
[17] Nishikawa H, Iwata N, Formation and growth of intermetallic compound layers at the interface during laser soldering using Sn–Ag Cu solder on a Cu pad[J]. Journal of Materials Processing Technology, 2015, 215: 6-11.
[18] Lee T Y, Choi W J, Tu K N, et al. Morphology, kinetics, and thermodynamics of solid-state aging of eutectic SnPb and Pb-free solders (Sn-3.5Ag, Sn-3.8Ag-0.7Cu and Sn-0.7Cu) on Cu[J]. Journal of Materials Research, 2002, 17(2): 291 − 301. doi: 10.1557/JMR.2002.0042
[19] Lai Y, Chen S, Ren X, et al. Solid-liquid interdiffusion bonding of Cu/Sn/Ni Micro-joints with the assistance of temperature gradient[J]. Acta Metallurgica Sinica, 2022, 35(11): 1912 − 1924.
[20] Chen L D, Huang M L, Zhou S M. Effect of electromigration on intermetallic compound formation in line-type Cu/Sn/Cu interconnect[J]. Journal of Alloys and Compounds, 2010, 504(2): 535 − 541. doi: 10.1016/j.jallcom.2010.05.158
[21] Chung C K, Duh J G, Kao C R. Direct evidence for a Cu-enriched region at the boundary between Cu6Sn5 and Cu3Sn during Cu/Sn reaction[J]. Scripta Materialia, 2010, 63(2): 258-260.
[22] Mo L P, Guo C W, Zhou Z, et al. Microstructural evolution of Cu-Sn-Ni compounds in full intermetallic micro-joint and in situ micro-bending test[J]. Journal of Materials Science-Materials in Electronics, 2018, 29(14): 11920 − 11929. doi: 10.1007/s10854-018-9293-8
[23] Görlich J, Schmitz G, Tu K N. On the mechanism of the binary Cu/Sn solder reaction[J]. Applied Physics Letters, 2005, 86: 053106
[24] Zhang Z, Hu X W, Jiang X X, et al. Influences of mono-Ni (P) and dual-Cu/Ni (P) plating on the interfacial microstructure evolution of solder joints[J]. Metallurgical and Materials Transactions A, 2018, 50(1): 480 − 492.
[25] Pal M K, Gergely G, Koncz-Horváth D, et al. Investigation of microstructure and wetting behavior of Sn-3.0Ag-0.5Cu (SAC305) lead-free solder with additions of 1.0 wt % SiC on copper substrate[J]. Intermetallics, 2021, 128: 106991. doi: 10.1016/j.intermet.2020.106991
[26] Zhang L, Gao L L. Interfacial compounds growth of SnAgCu(nano La2O3)/Cu solder joints based on experiments and FEM[J]. Journal of Alloys and Compounds, 2015, 635: 55-60.
-
期刊类型引用(2)
1. 董海义,何平,李琦,郭迪舟,王徐建,马永胜,刘佰奇,黄涛,张磊,孙飞,刘天锋,田丕龙,杨雨晨,杨奇,王鹏程,刘佳明,刘顺明,孙晓阳,朱邦乐,谭彪. HEPS储存环真空系统研制. 真空. 2025(02): 1-11 . 百度学术
2. 张忠科,胡炜皓,雍春军. Inconel625高温合金等离子弧加丝焊接接头组织与性能. 有色金属工程. 2023(09): 23-32 . 百度学术
其他类型引用(0)