高级检索

基于超声辅助烧结工艺下Cu@Ag NPs互连接头组织与性能

修子进, 张棚皓, 张文武, 王秀琦, 计红军

修子进, 张棚皓, 张文武, 王秀琦, 计红军. 基于超声辅助烧结工艺下Cu@Ag NPs互连接头组织与性能[J]. 焊接学报, 2023, 44(12): 28-34. DOI: 10.12073/j.hjxb.20230613013
引用本文: 修子进, 张棚皓, 张文武, 王秀琦, 计红军. 基于超声辅助烧结工艺下Cu@Ag NPs互连接头组织与性能[J]. 焊接学报, 2023, 44(12): 28-34. DOI: 10.12073/j.hjxb.20230613013
XIU Zijin, ZHANG Penghao, ZHANG Wenwu, WANG Xiuqi, JI Hongjun. Microstructural characteristics and properties of Cu@Ag NPs interconnect joints fabricated via ultrasound-assisted sintering[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(12): 28-34. DOI: 10.12073/j.hjxb.20230613013
Citation: XIU Zijin, ZHANG Penghao, ZHANG Wenwu, WANG Xiuqi, JI Hongjun. Microstructural characteristics and properties of Cu@Ag NPs interconnect joints fabricated via ultrasound-assisted sintering[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(12): 28-34. DOI: 10.12073/j.hjxb.20230613013

基于超声辅助烧结工艺下Cu@Ag NPs互连接头组织与性能

基金项目: 国家自然科学基金资助项目(52175310, 52232004)
详细信息
    作者简介:

    修子进,硕士研究生;主要从事纳米封装材料的制备及其低温烧结研究;Email: xiuzijin@hit.edu.cn

    通讯作者:

    计红军,博士,教授,博士研究生导师; Email: jhj7005@hit.edu.cn

  • 中图分类号: TG 425

Microstructural characteristics and properties of Cu@Ag NPs interconnect joints fabricated via ultrasound-assisted sintering

  • 摘要:

    采用一种银铜两相的核壳结构材料—银包铜纳米颗粒(Cu@Ag NPs)配置焊膏,引入超声辅助烧结技术进行烧结,设计了3组参数试验,分别探究了烧结温度、超声时间和超声功率对互连接头的组织形貌和力学性能的影响.结果表明,烧结组织中银铜两相主要以置换固溶体的形式存在,随着超声作用的引入及烧结温度的上升,烧结组织的致密度增加,并最终在150 ~ 200 ℃形成较好的冶金结合,实现了低温连接. 超声时间由2 s增加到8 s, 超声功率由50 W增加到350 W,烧结组织逐渐变得致密、均匀;当超声能量过高时,烧结层出现了明显的塑性变形和裂缝. 在烧结温度150 ℃、超声时间6 s、超声功率250 W的条件下,获得了均匀致密的烧结组织,抗剪强度为149.5 MPa.

    Abstract:

    Silver-coated copper nanoparticles (Cu@Ag NPs), a two-phase core-shell structured material, were incorporated into solder paste, and ultrasound-assisted sintering technology was employed for the sintering process. Three sets of parameter experiments were designed to investigate the effects of sintering temperature, ultrasound time, and ultrasound power on the microstructure and mechanical properties of interconnect joints. The results demonstrate that in the sintered structure, silver and copper phases primarily existed as a replacement solid solution. With the introduction of ultrasound and an increase in sintering temperature, the density of the sintered structure increased significantly, ultimately achieving superior metallurgical bonding at temperatures ranging from 150 to 200 ℃ , enabling low-temperature connections. As ultrasound time increased from 2 s to 8 s and ultrasound power increased from 50 W to 350 W, the resulting sintered structure gradually became denser and more uniform. However, excessive ultrasound energy led to noticeable plastic deformation and cracks within the sintered layer. When sintering temperature of 150 ℃ was applied along with an ultrasound time of 6 s and an ultrasound power of 250 W, a uniformly dense sintered structure with shear strength reaching up to 149.5 MPa was obtained.

  • 图  1   Cu@Ag NPs的形貌

    Figure  1.   Morphology of Cu@Ag NPs

    图  2   超声辅助烧结原理示意图

    Figure  2.   Schematic diagrams of UAS

    图  3   不同温度下UAS互连接头SEM微观形貌

    Figure  3.   SEM microstructure of UAS interconnect joints under different temperature. (a) 50 ℃; (b) 100 ℃; (c) 150 ℃; (d) 200 ℃

    图  4   不同超声时间UAS互连接头SEM微观形貌

    Figure  4.   SEM microstructure of UAS interconnect joints under different ultrasound time. (a) 2 s; (b) 4 s; (c) 6 s; (d) 8 s

    图  5   不同超声功率下UAS互连接头SEM微观形貌图

    Figure  5.   SEM microstructure of UAS interconnect joints under different ultrasound power. (a) 50 W; (b) 150 W; (c) 250 W; (d) 350 W

    图  6   不同温度UAS接头抗剪强度变化趋势

    Figure  6.   Shear strength variation trend of UAS joints at different temperature

    图  7   不同超声时间UAS接头抗剪强度变化趋势

    Figure  7.   Shear strength variation trend of UAS joints at different ultrasound time

    图  8   不同超声功率UAS接头抗剪强度变化趋势

    Figure  8.   Shear strength variation trend of UAS joints at different ultrasound power

    图  9   UAS工艺接头断口SEM形貌

    Figure  9.   SEM morphology of fracture of a UAS joint

    图  10   UAS界面组织及其EDS表征

    Figure  10.   Interface and EDS scanning mapping of UAS structure. (a) elemented mapping of Cu/Ag of sintering structure; (b) elemented mapping of Ag; (c) amplified SEM morphology; (d) elemented mapping of Cu/Ag corresponding to Fig.10c

    图  11   UAS工艺下基板跨界面元素分布

    Figure  11.   Elemental distribution at the interface between solder layer and substrate under UAS. (a) element line scanning; (b) elemental distribution

    表  1   烧结工艺参数

    Table  1   Sintering experiment parameters

    焊件尺寸
    mm × mm × mm
    烧结温度
    T/℃
    超声时间
    t/s
    超声功率
    P/W
    5 × 5 × 0.5504250
    5 × 5 × 0.51004250
    5 × 5 × 0.51504250
    5 × 5 × 0.52004250
    5 × 5 × 0.51502250
    5 × 5 × 0.51506250
    5 × 5 × 0.51508250
    5 × 5 × 0.5150450
    5 × 5 × 0.51504150
    5 × 5 × 0.51504350
    下载: 导出CSV

    表  2   UAS工艺界面EDS元素含量

    Table  2   Element content of interface under UAS by EDS

    位置元素
    CuAg
    1 95.00 5.00
    2 94.52 5.48
    3 95.13 4.87
    4 28.98 71.02
    5 28.10 71.90
    6 28.36 71.64
    下载: 导出CSV
  • [1] 周均博. Ag层厚度对Cu@Ag纳米颗粒烧结行为的作用及其互连应用[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    Zhou Junbo. Effect of Ag layer thickness on Cu@Ag NPs sintering and their interconnect applications [D]. Harbin: Harbin Institute of Technology, 2018.

    [2] 吴玲, 赵璐冰. 第三代半导体产业发展与趋势展望[J]. 科技导报, 2021, 39(14): 20 − 29. doi: 10.3981/j.issn.1000-7857.2021.14.002

    Wu Ling, Zhao Lubing. Development and trend of the third generation semiconductor industry[J]. Science Technology Review, 2021, 39(14): 20 − 29. doi: 10.3981/j.issn.1000-7857.2021.14.002

    [3]

    Lee J B, Hwang H Y, Rhee M W. Reliability investigation of Cu/In TLP bonding[J]. Journal of Electronic Materials, 2015, 44(1): 435 − 41. doi: 10.1007/s11664-014-3373-1

    [4]

    Jiang Q, Zhang S H, Li J C. Grain size-dependent diffusion activation energy in nanomaterials[J]. Solid State Communications, 2004, 130(9): 581 − 584. doi: 10.1016/j.ssc.2004.03.033

    [5]

    Qu Y D, Liang X L, Kong X Q, et al. Size-dependent cohesive energy, melting temperature, and Debye temperature of spherical metallic nanoparticles[J]. Physics of Metals and Metallography, 2017, 118(6): 528 − 534. doi: 10.1134/S0031918X17060102

    [6]

    Moon K S, Dong H, Maric R, et al. Thermal behavior of silver nanoparticles for low-temperature interconnect applications[J]. Journal of Electronic Materials, 2005, 34(2): 168 − 175. doi: 10.1007/s11664-005-0229-8

    [7]

    Van Teijlingen A, Davis S A, Hall S R. Size-dependent melting point depression of nickel nanoparticles[J]. Nanoscale Advances, 2020, 2(6): 2347 − 2351. doi: 10.1039/D0NA00153H

    [8]

    Ishizaki T, Usui M, Yamada Y. Thermal cycle reliability of Cu-nanoparticle joint[J]. Microelectronics Reliability, 2015, 55(9): 1861 − 1866.

    [9] 吕潇雅. 核壳结构银包铜纳米颗粒的制备工艺与烧结性能表征[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    Lü Xiaoya. Preparation and sintering properties of Cu@Ag core-shell nanoparticles [D]. Harbin: Harbin Institute of Technology, 2017.

    [10]

    Hong S, Kim N. Synthesis of 3D printable Cu–Ag core–shell materials: Kinetics of CuO film removal[J]. Journal of Electronic Materials, 2015, 44(3): 823 − 830. doi: 10.1007/s11664-014-3588-1

    [11]

    Tsai C H, Chen S Y, Song J M, et al. Thermal stability of Cu@ Ag core–shell nanoparticles[J]. Corrosion Science, 2013, 74: 123 − 129. doi: 10.1016/j.corsci.2013.04.032

    [12]

    Pajor-Świerzy A, Farraj Y, Kamyshny A, et al. Air stable copper-silver core-shell submicron particles: Synthesis and conductive ink formulation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 521: 272 − 280.

    [13]

    Xiao Y, Ji H, Li M, et al. Ultrasound-assisted brazing of Cu/Al dissimilar metals using a Zn–3Al filler metal[J]. Materials & Design (1980-2015), 2013, 52: 740 − 747.

    [14]

    Xiao Y, Ji H, Li M, et al. Ultrasound-induced equiaxial flower-like CuZn5/Al composite microstructure formation in Al/Zn–Al/Cu joint[J]. Materials Science and Engineering:A, 2014, 594: 135 − 139. doi: 10.1016/j.msea.2013.11.063

  • 期刊类型引用(6)

    1. 蒋凡,张成钰,徐斌,张国凯,闫朝阳,陈树君. 变极性等离子弧焊技术发展及其在航天制造领域应用现状. 航天制造技术. 2024(03): 15-26 . 百度学术
    2. 甘世明,张佳欣,包晓艳,韩永全,孙振邦. 能量配比对6 mm 7A52铝合金板材VPPA-MIG复合焊接残余应力分布的影响. 内蒙古工业大学学报(自然科学版). 2024(05): 461-466 . 百度学术
    3. 邱劲松,马佳良,杨鑫华,许鸿吉. 钻孔法测大型构件焊接残余应力试验的误差分析与优化. 焊接技术. 2022(03): 27-33+114 . 百度学术
    4. 梁巧云,蔺治强,张吉银,姚倡锋. 叶片铣削及喷丸加工残余应力测试与三维表征. 机械科学与技术. 2022(11): 1794-1804 . 百度学术
    5. 黄如旭,谢晓忠,张平平,祁江涛,李艳青,黄进浩. 基于盲孔法的水下承压结构残余应力测试研究. 舰船科学技术. 2021(07): 23-27 . 百度学术
    6. 李刚,李中双,符伟,谭俊哲,杨康. 焊接顺序对管状大厚度V形接头焊接残余应力场的影响. 材料导报. 2021(S2): 325-328 . 百度学术

    其他类型引用(2)

图(11)  /  表(2)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  119
  • PDF下载量:  51
  • 被引次数: 8
出版历程
  • 收稿日期:  2023-06-12
  • 网络出版日期:  2023-11-12
  • 刊出日期:  2023-12-24

目录

    /

    返回文章
    返回