Microstructural characteristics and properties of Cu@Ag NPs interconnect joints fabricated via ultrasound-assisted sintering
-
摘要:
采用一种银铜两相的核壳结构材料—银包铜纳米颗粒(Cu@Ag NPs)配置焊膏,引入超声辅助烧结技术进行烧结,设计了3组参数试验,分别探究了烧结温度、超声时间和超声功率对互连接头的组织形貌和力学性能的影响.结果表明,烧结组织中银铜两相主要以置换固溶体的形式存在,随着超声作用的引入及烧结温度的上升,烧结组织的致密度增加,并最终在150 ~ 200 ℃形成较好的冶金结合,实现了低温连接. 超声时间由2 s增加到8 s, 超声功率由50 W增加到350 W,烧结组织逐渐变得致密、均匀;当超声能量过高时,烧结层出现了明显的塑性变形和裂缝. 在烧结温度150 ℃、超声时间6 s、超声功率250 W的条件下,获得了均匀致密的烧结组织,抗剪强度为149.5 MPa.
Abstract:Silver-coated copper nanoparticles (Cu@Ag NPs), a two-phase core-shell structured material, were incorporated into solder paste, and ultrasound-assisted sintering technology was employed for the sintering process. Three sets of parameter experiments were designed to investigate the effects of sintering temperature, ultrasound time, and ultrasound power on the microstructure and mechanical properties of interconnect joints. The results demonstrate that in the sintered structure, silver and copper phases primarily existed as a replacement solid solution. With the introduction of ultrasound and an increase in sintering temperature, the density of the sintered structure increased significantly, ultimately achieving superior metallurgical bonding at temperatures ranging from 150 to 200 ℃ , enabling low-temperature connections. As ultrasound time increased from 2 s to 8 s and ultrasound power increased from 50 W to 350 W, the resulting sintered structure gradually became denser and more uniform. However, excessive ultrasound energy led to noticeable plastic deformation and cracks within the sintered layer. When sintering temperature of 150 ℃ was applied along with an ultrasound time of 6 s and an ultrasound power of 250 W, a uniformly dense sintered structure with shear strength reaching up to 149.5 MPa was obtained.
-
-
表 1 烧结工艺参数
Table 1 Sintering experiment parameters
焊件尺寸
mm × mm × mm烧结温度
T/℃超声时间
t/s超声功率
P/W5 × 5 × 0.5 50 4 250 5 × 5 × 0.5 100 4 250 5 × 5 × 0.5 150 4 250 5 × 5 × 0.5 200 4 250 5 × 5 × 0.5 150 2 250 5 × 5 × 0.5 150 6 250 5 × 5 × 0.5 150 8 250 5 × 5 × 0.5 150 4 50 5 × 5 × 0.5 150 4 150 5 × 5 × 0.5 150 4 350 表 2 UAS工艺界面EDS元素含量
Table 2 Element content of interface under UAS by EDS
位置 元素 Cu Ag 1 95.00 5.00 2 94.52 5.48 3 95.13 4.87 4 28.98 71.02 5 28.10 71.90 6 28.36 71.64 -
[1] 周均博. Ag层厚度对Cu@Ag纳米颗粒烧结行为的作用及其互连应用[D]. 哈尔滨: 哈尔滨工业大学, 2018. Zhou Junbo. Effect of Ag layer thickness on Cu@Ag NPs sintering and their interconnect applications [D]. Harbin: Harbin Institute of Technology, 2018.
[2] 吴玲, 赵璐冰. 第三代半导体产业发展与趋势展望[J]. 科技导报, 2021, 39(14): 20 − 29. doi: 10.3981/j.issn.1000-7857.2021.14.002 Wu Ling, Zhao Lubing. Development and trend of the third generation semiconductor industry[J]. Science Technology Review, 2021, 39(14): 20 − 29. doi: 10.3981/j.issn.1000-7857.2021.14.002
[3] Lee J B, Hwang H Y, Rhee M W. Reliability investigation of Cu/In TLP bonding[J]. Journal of Electronic Materials, 2015, 44(1): 435 − 41. doi: 10.1007/s11664-014-3373-1
[4] Jiang Q, Zhang S H, Li J C. Grain size-dependent diffusion activation energy in nanomaterials[J]. Solid State Communications, 2004, 130(9): 581 − 584. doi: 10.1016/j.ssc.2004.03.033
[5] Qu Y D, Liang X L, Kong X Q, et al. Size-dependent cohesive energy, melting temperature, and Debye temperature of spherical metallic nanoparticles[J]. Physics of Metals and Metallography, 2017, 118(6): 528 − 534. doi: 10.1134/S0031918X17060102
[6] Moon K S, Dong H, Maric R, et al. Thermal behavior of silver nanoparticles for low-temperature interconnect applications[J]. Journal of Electronic Materials, 2005, 34(2): 168 − 175. doi: 10.1007/s11664-005-0229-8
[7] Van Teijlingen A, Davis S A, Hall S R. Size-dependent melting point depression of nickel nanoparticles[J]. Nanoscale Advances, 2020, 2(6): 2347 − 2351. doi: 10.1039/D0NA00153H
[8] Ishizaki T, Usui M, Yamada Y. Thermal cycle reliability of Cu-nanoparticle joint[J]. Microelectronics Reliability, 2015, 55(9): 1861 − 1866.
[9] 吕潇雅. 核壳结构银包铜纳米颗粒的制备工艺与烧结性能表征[D]. 哈尔滨: 哈尔滨工业大学, 2017. Lü Xiaoya. Preparation and sintering properties of Cu@Ag core-shell nanoparticles [D]. Harbin: Harbin Institute of Technology, 2017.
[10] Hong S, Kim N. Synthesis of 3D printable Cu–Ag core–shell materials: Kinetics of CuO film removal[J]. Journal of Electronic Materials, 2015, 44(3): 823 − 830. doi: 10.1007/s11664-014-3588-1
[11] Tsai C H, Chen S Y, Song J M, et al. Thermal stability of Cu@ Ag core–shell nanoparticles[J]. Corrosion Science, 2013, 74: 123 − 129. doi: 10.1016/j.corsci.2013.04.032
[12] Pajor-Świerzy A, Farraj Y, Kamyshny A, et al. Air stable copper-silver core-shell submicron particles: Synthesis and conductive ink formulation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 521: 272 − 280.
[13] Xiao Y, Ji H, Li M, et al. Ultrasound-assisted brazing of Cu/Al dissimilar metals using a Zn–3Al filler metal[J]. Materials & Design (1980-2015), 2013, 52: 740 − 747.
[14] Xiao Y, Ji H, Li M, et al. Ultrasound-induced equiaxial flower-like CuZn5/Al composite microstructure formation in Al/Zn–Al/Cu joint[J]. Materials Science and Engineering:A, 2014, 594: 135 − 139. doi: 10.1016/j.msea.2013.11.063
-
期刊类型引用(6)
1. 蒋凡,张成钰,徐斌,张国凯,闫朝阳,陈树君. 变极性等离子弧焊技术发展及其在航天制造领域应用现状. 航天制造技术. 2024(03): 15-26 . 百度学术
2. 甘世明,张佳欣,包晓艳,韩永全,孙振邦. 能量配比对6 mm 7A52铝合金板材VPPA-MIG复合焊接残余应力分布的影响. 内蒙古工业大学学报(自然科学版). 2024(05): 461-466 . 百度学术
3. 邱劲松,马佳良,杨鑫华,许鸿吉. 钻孔法测大型构件焊接残余应力试验的误差分析与优化. 焊接技术. 2022(03): 27-33+114 . 百度学术
4. 梁巧云,蔺治强,张吉银,姚倡锋. 叶片铣削及喷丸加工残余应力测试与三维表征. 机械科学与技术. 2022(11): 1794-1804 . 百度学术
5. 黄如旭,谢晓忠,张平平,祁江涛,李艳青,黄进浩. 基于盲孔法的水下承压结构残余应力测试研究. 舰船科学技术. 2021(07): 23-27 . 百度学术
6. 李刚,李中双,符伟,谭俊哲,杨康. 焊接顺序对管状大厚度V形接头焊接残余应力场的影响. 材料导报. 2021(S2): 325-328 . 百度学术
其他类型引用(2)